Advertisements
Advertisements
प्रश्न
Find the differential equation of the curve represented by xy = aex + be–x + x2
उत्तर
Given xy = aex + be–x + x2 ........(1)
Where a and b are aribitrary constant,
Differentiate equation (1) twice successively,
Because we have two arbitray constant.
`x ("d"y)/("d"x) + y(1)` = aex – be–x + 2x .......(2)
`x ("d"^2y)/("d"x^2) + ("d")/("d"x) (1) + ("d"y)/("d"x)` = aex + be–x + 2
`x ("d"^2y)/("d"x^2) + (2"d"y)/("d"x)` = aex + be–x + 2 ......(3)
From (1), we get xy – x2 = aex + be–x ........(4)
Substituting equation (4) in (3), we get
∴ `x ("d"^2y)/("d"x^2) + (2"d"y)/("d"x) - xy + x^2 - 2` = 0 is the required differential equation.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
Solve the following differential equation:
`"dy"/"dx" = (1 + "y")^2/(1 + "x")^2`
Solve the following differential equation:
`"y" - "x" "dy"/"dx" = 0`
For the following differential equation find the particular solution satisfying the given condition:
`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`
Choose the correct option from the given alternatives:
The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`
In the following example verify that the given function is a solution of the differential equation.
`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`
Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Solve the following differential equation:
`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`
Find the particular solution of the following differential equation:
`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`
Select and write the correct alternative from the given option for the question
The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is
Find the differential equation from the relation x2 + 4y2 = 4b2
The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is
Find the differential equation of the family of all non-vertical lines in a plane
The differential equation of all parabolas whose axis is Y-axis, is ______.
Solve the differential equation
ex tan y dx + (1 + ex) sec2 y dy = 0
Form the differential equation of all concentric circles having centre at the origin.