मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Choose the correct option from the given alternatives: The solution of the differential equation dydxxyxdydx=secx-ytanx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct option from the given alternatives:

The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`

पर्याय

  • y sec x + tan x = c

  • y sec x = tan x + c

  • sec x + y tan x = c

  • sec x = y tan x + c

MCQ

उत्तर

y sec x = tan x + c

Hint:

`"dy"/"dx" = sec "x" - "y" tan "x"`

∴ `"dy"/"dx" + "y" tan "x" = sec"x"`

I.F. = `"e"^(int "tan x dx") = "e"^(log sec "x") = sec x`

∴ the solution is

`"y" * sec"x" = int sec "x" * sec "x" "dx" + "c"`

∴ y sec x = tan x + c

shaalaa.com
Formation of Differential Equations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Differential Equations - Miscellaneous exercise 1 [पृष्ठ २१६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Differential Equations
Miscellaneous exercise 1 | Q 1.11 | पृष्ठ २१६

संबंधित प्रश्‍न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

x3 + y3 = 4ax


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

Ax2 + By2 = 1


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = A cos (log x) + B sin (log x)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = 4(x - b)


Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


Solve the following differential equation:

`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`


For the following differential equation find the particular solution satisfying the given condition:

`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1


Reduce the following differential equation to the variable separable form and hence solve:

`("x - y")^2 "dy"/"dx" = "a"^2`


Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`


Reduce the following differential equation to the variable separable form and hence solve:

`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is


Choose the correct option from the given alternatives:

`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of


In the following example verify that the given function is a solution of the differential equation.

`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`


In the following example verify that the given function is a solution of the differential equation.

`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`


Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.


Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.


Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.


Solve the following differential equation:

`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`


Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`


Find the differential equation of family of all ellipse whose major axis is twice the minor axis


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.


Find the differential equation of the family of all non-vertical lines in a plane


Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis


Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis


Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis


Form the differential equation of all lines which makes intercept 3 on x-axis.


For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.


If y = (tan–1 x)2 then `(x^2 + 1)^2 (d^2y)/(dx^2) + 2x(x^2 + 1) (dy)/(dx)` = ______.


The differential equation for a2y = log x + b, is ______.


If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2


Form the differential equation of all concentric circles having centre at the origin.


A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×