मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Solve the following differential equation: (x2 + y2)dx - 2xy dy = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0

बेरीज

उत्तर

(x2 + y2)dx - 2xy dy = 0

∴ 2xy dy = (x2 + y2)dx

∴ `"dy"/"dx" = ("x"^2 + "y"^2)/"2xy"`    ....(1)

Put y = vx

∴ `"dy"/"dx" = "v"+ ("xdv")/"dx"`

∴ (1) becomes, v + x`"dv"/"dx" = ("x"^2 + "v"^2"x"^2)/("2x"("vx"))` 

∴ `"v + x""dv"/"dx" = (1 + "v"^2)/"2v"`

∴ `"x""dv"/"dx" = (1 + "v"^2)/"2v" - "v" = (1 + "v"^2 - 2"v"^2)/"2v"`

∴ `"x""dv"/"dx" = (1 - "v"^2)/"2v"`

∴ `"2v"/(1 - "v"^2)"dv" = 1/"x" "dx"`

Integrating both sides, we get

`int"2v"/(1 - "v"^2)"dv" = int 1/"x" "dx"`

`- int"- 2v"/(1 - "v"^2)"dv" = int 1/"x" "dx"`

∴ - log |1 - v2| = log x + log c1  ....`[because "d"/"dv" (1 - "v"^2) = - 2"v" and  int("f"'("x"))/("f"("x")) "dx" = log |"f"("x")| + "c"]`

∴ `log |1/(1 - "v"^2)| = log "c"_1 "x"`

∴ `log |1/(1 - ("y"^2/"x"^2))| = log "c"_1 "x"`

∴ `log |"x"^2/("x"^2 - "y"^2)| = log "c"_1 "x"`

∴ `"x"^2/("x"^2 - "y"^2) = "c"_1"x"`

∴ `"x"^2 - "y"^2 = 1/"c"_1 "x"`

∴ `"x"^2 - "y"^2 = "cx"`, where c = `1/"c"_1`

This is the general solution.

shaalaa.com
Formation of Differential Equations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Differential Equations - Exercise 6.4 [पृष्ठ २०३]

संबंधित प्रश्‍न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

x3 + y3 = 4ax


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

Ax2 + By2 = 1


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y2 = (x + c)3


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = 4(x - b)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = e−2x (A cos x + B sin x)


Find the differential equation of all circles having radius 9 and centre at point (h, k).


Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.


Form the differential equation of all parabolas whose axis is the X-axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`


Solve the following differential equation:

`(cos^2y)/x dy + (cos^2x)/y dx` = 0


Solve the following differential equation:

`2"e"^("x + 2y") "dx" - 3"dy" = 0`


For the following differential equation find the particular solution satisfying the given condition:

`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`


Reduce the following differential equation to the variable separable form and hence solve:

`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`


Choose the correct option from the given alternatives:

The solution of `("x + y")^2 "dy"/"dx" = 1` is


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a sin (x + b)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Solve the following differential equation:

`"dy"/"dx" = ("2y" - "x")/("2y + x")`


Solve the following differential equation:

x dy = (x + y + 1) dx


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Find the particular solution of the following differential equation:

y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2


Find the particular solution of the following differential equation:

`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


Select and write the correct alternative from the given option for the question 

The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is


Find the differential equation of family of lines making equal intercepts on coordinate axes


Form the differential equation of y = (c1 + c2)ex 


Find the differential equation of family of all ellipse whose major axis is twice the minor axis


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.


Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be 8x, where A and B are arbitrary constants


Choose the correct alternative:

The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is


The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.


If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?


The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.


The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


The differential equation of all parabolas whose axis is Y-axis, is ______.


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×