Advertisements
Advertisements
प्रश्न
Solve the following differential equation:
(x2 + y2)dx - 2xy dy = 0
उत्तर
(x2 + y2)dx - 2xy dy = 0
∴ 2xy dy = (x2 + y2)dx
∴ `"dy"/"dx" = ("x"^2 + "y"^2)/"2xy"` ....(1)
Put y = vx
∴ `"dy"/"dx" = "v"+ ("xdv")/"dx"`
∴ (1) becomes, v + x`"dv"/"dx" = ("x"^2 + "v"^2"x"^2)/("2x"("vx"))`
∴ `"v + x""dv"/"dx" = (1 + "v"^2)/"2v"`
∴ `"x""dv"/"dx" = (1 + "v"^2)/"2v" - "v" = (1 + "v"^2 - 2"v"^2)/"2v"`
∴ `"x""dv"/"dx" = (1 - "v"^2)/"2v"`
∴ `"2v"/(1 - "v"^2)"dv" = 1/"x" "dx"`
Integrating both sides, we get
`int"2v"/(1 - "v"^2)"dv" = int 1/"x" "dx"`
`- int"- 2v"/(1 - "v"^2)"dv" = int 1/"x" "dx"`
∴ - log |1 - v2| = log x + log c1 ....`[because "d"/"dv" (1 - "v"^2) = - 2"v" and int("f"'("x"))/("f"("x")) "dx" = log |"f"("x")| + "c"]`
∴ `log |1/(1 - "v"^2)| = log "c"_1 "x"`
∴ `log |1/(1 - ("y"^2/"x"^2))| = log "c"_1 "x"`
∴ `log |"x"^2/("x"^2 - "y"^2)| = log "c"_1 "x"`
∴ `"x"^2/("x"^2 - "y"^2) = "c"_1"x"`
∴ `"x"^2 - "y"^2 = 1/"c"_1 "x"`
∴ `"x"^2 - "y"^2 = "cx"`, where c = `1/"c"_1`
This is the general solution.
APPEARS IN
संबंधित प्रश्न
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
x3 + y3 = 4ax
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
Ax2 + By2 = 1
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y2 = (x + c)3
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = e−2x (A cos x + B sin x)
Find the differential equation of all circles having radius 9 and centre at point (h, k).
Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.
Form the differential equation of all parabolas whose axis is the X-axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
Solve the following differential equation:
`(cos^2y)/x dy + (cos^2x)/y dx` = 0
Solve the following differential equation:
`2"e"^("x + 2y") "dx" - 3"dy" = 0`
For the following differential equation find the particular solution satisfying the given condition:
`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`
Reduce the following differential equation to the variable separable form and hence solve:
`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`
Choose the correct option from the given alternatives:
The solution of `("x + y")^2 "dy"/"dx" = 1` is
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 = "2y"^2 log "y", "x"^2 + "y"^2 = "xy" "dx"/"dy"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a sin (x + b)
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`
Solve the following differential equation:
`"dy"/"dx" = "x"^2"y" + "y"`
Solve the following differential equation:
`"dy"/"dx" = ("2y" - "x")/("2y + x")`
Solve the following differential equation:
x dy = (x + y + 1) dx
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Find the particular solution of the following differential equation:
y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2
Find the particular solution of the following differential equation:
`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Select and write the correct alternative from the given option for the question
The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is
Find the differential equation of family of lines making equal intercepts on coordinate axes
Form the differential equation of y = (c1 + c2)ex
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.
Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be –8x, where A and B are arbitrary constants
Choose the correct alternative:
The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is
The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.
If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?
The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.
The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.
The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.
The differential equation of all parabolas whose axis is Y-axis, is ______.
The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.
The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.