English

Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex 

Sum

Solution

y = (c1 + c2x)ex       ......(i)

Here, c1 and c2 are arbitrary constants.

Differentiating w.r.t. x, we get

`("d"y)/("d"x)` = (c1 + c2x)ex + c2ex

∴ `("d"y)/("d"x)` = y + c2ex   ......(ii) .......[From(i)]

Again, differentiating w.r.t. x, we get

`("d"^2y)/("d"x^2) = ("d"y)/("d"x) + "c"_2"e"^x`

∴ c2ex = `("d"^2y)/("d"x^2) - ("d"y)/("d"x)`   .....(iii)

Substituting (iii) in (ii), we get

`("d"y)/("d"x) = y + ("d"^2y)/("d"x^2) -  ("d"y)/("d"x)`

∴ `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 2.6: Differential Equations - Attempt the following questions II

APPEARS IN

SCERT Maharashtra Mathematics and Statistics (Arts and Science) [English] 12 Standard HSC
Chapter 2.6 Differential Equations
Attempt the following questions II | Q 8

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

x3 + y3 = 4ax


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

Ax2 + By2 = 1


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

c1x3 + c2y2 = 5


Form the differential equation of family of lines having intercepts a and b on the co-ordinate ares respectively.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`


Solve the following differential equation:

cos x . cos y dy − sin x . sin y dx = 0


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


Solve the following differential equation:

`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`


For the following differential equation find the particular solution satisfying the given condition:

3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.


Reduce the following differential equation to the variable separable form and hence solve:

`"dy"/"dx" = cos("x + y")`


Reduce the following differential equation to the variable separable form and hence solve:

`("x - y")^2 "dy"/"dx" = "a"^2`


Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`


Reduce the following differential equation to the variable separable form and hence solve:

(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.


Choose the correct option from the given alternatives:

The differential equation of y = `"c"^2 + "c"/"x"` is


Choose the correct option from the given alternatives:

The solution of `("x + y")^2 "dy"/"dx" = 1` is


Choose the correct option from the given alternatives:

The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`


In the following example verify that the given function is a solution of the differential equation.

`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`


Solve the following differential equation:

x dy = (x + y + 1) dx


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Solve the following differential equation:

`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


Find the particular solution of the following differential equation:

`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`


The general solution of `(dy)/(dx)` = e−x is ______.


Form the differential equation of all straight lines touching the circle x2 + y2 = r2


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be 8x, where A and B are arbitrary constants


Choose the correct alternative:

The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


The differential equation representing the family of ellipse having foci either on the x-axis or on the y-axis centre at the origin and passing through the point (0, 3) is ______.


The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.


Solve the differential equation

cos2(x – 2y) = `1 - 2dy/dx`


Form the differential equation of all concentric circles having centre at the origin.


A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×