Advertisements
Advertisements
Question
Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex
Solution
y = (c1 + c2x)ex ......(i)
Here, c1 and c2 are arbitrary constants.
Differentiating w.r.t. x, we get
`("d"y)/("d"x)` = (c1 + c2x)ex + c2ex
∴ `("d"y)/("d"x)` = y + c2ex ......(ii) .......[From(i)]
Again, differentiating w.r.t. x, we get
`("d"^2y)/("d"x^2) = ("d"y)/("d"x) + "c"_2"e"^x`
∴ c2ex = `("d"^2y)/("d"x^2) - ("d"y)/("d"x)` .....(iii)
Substituting (iii) in (ii), we get
`("d"y)/("d"x) = y + ("d"^2y)/("d"x^2) - ("d"y)/("d"x)`
∴ `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
x3 + y3 = 4ax
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
Ax2 + By2 = 1
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
c1x3 + c2y2 = 5
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`
Solve the following differential equation:
cos x . cos y dy − sin x . sin y dx = 0
Solve the following differential equation:
`"dy"/"dx" = - "k",` where k is a constant.
Solve the following differential equation:
`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`
For the following differential equation find the particular solution satisfying the given condition:
3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.
Reduce the following differential equation to the variable separable form and hence solve:
`"dy"/"dx" = cos("x + y")`
Reduce the following differential equation to the variable separable form and hence solve:
`("x - y")^2 "dy"/"dx" = "a"^2`
Reduce the following differential equation to the variable separable form and hence solve:
`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`
Reduce the following differential equation to the variable separable form and hence solve:
(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.
Choose the correct option from the given alternatives:
The differential equation of y = `"c"^2 + "c"/"x"` is
Choose the correct option from the given alternatives:
The solution of `("x + y")^2 "dy"/"dx" = 1` is
Choose the correct option from the given alternatives:
The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
Solve the following differential equation:
x dy = (x + y + 1) dx
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Solve the following differential equation:
`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`
Find the particular solution of the following differential equation:
(x + y)dy + (x - y)dx = 0; when x = 1 = y
Find the particular solution of the following differential equation:
`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`
The general solution of `(dy)/(dx)` = e−x is ______.
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be –8x, where A and B are arbitrary constants
Choose the correct alternative:
The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is
The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.
The differential equation representing the family of ellipse having foci either on the x-axis or on the y-axis centre at the origin and passing through the point (0, 3) is ______.
The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.
Solve the differential equation
cos2(x – 2y) = `1 - 2dy/dx`
Form the differential equation of all concentric circles having centre at the origin.
A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.