English

Reduce the following differential equation to the variable separable form and hence solve: dydxx + ydydx=cos(x + y) - Mathematics and Statistics

Advertisements
Advertisements

Question

Reduce the following differential equation to the variable separable form and hence solve:

`"dy"/"dx" = cos("x + y")`

Sum

Solution

Given, equation is `"dy"/"dx"` = cos (x + y)

Put x + y = u,

Then `1 + "dy"/"dx" = "du"/"dx"`

∴ `"dy"/"dx" = "du"/"dx" - 1`

∴ (1) becomes, `"du"/"dx" - 1` = cos u

∴ `"du"/"dx"` = 1 + cos u

∴ `1/(1 + cos "u")`du = dx

Integrating both sides, we get

`int 1/(1 + cos "u") "du" = int "dx"`

∴ `int 1/(2cos^2 ("u"/2)) "du" = int "dx"`

∴ `1/2 int sec^2 ("u"/2)"du" = int "dx"`

∴ `1/2 (tan("u"/2))/(1/2) = "x" + c`

∴ `tan (("x + y")/2)` = x + c

This is the general solution.

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Exercise 6.3 [Page 201]

APPEARS IN

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

x3 + y3 = 4ax


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = c1e2x + c2e5x 


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

c1x3 + c2y2 = 5


Find the differential equation all parabolas having a length of latus rectum 4a and axis is parallel to the axis.


Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.


Form the differential equation of all parabolas whose axis is the X-axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `(sin^-1 "x")^2 + "c"; (1 - "x"^2) ("d"^2"y")/"dx"^2 - "x" "dy"/"dx" = 2`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`


Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Choose the correct option from the given alternatives:

The differential equation of y = `"c"^2 + "c"/"x"` is


Choose the correct option from the given alternatives:

The solution of `("x + y")^2 "dy"/"dx" = 1` is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is


The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

`"y"^2 = "a"("b - x")("b + x")`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a sin (x + b)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = b(x + 4)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Find the particular solution of the following differential equation:

`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`


Form the differential equation of family of standard circle


Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Find the differential equation from the relation x2 + 4y2 = 4b2 


The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.


Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.


The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.


The differential equation for a2y = log x + b, is ______.


If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2


Solve the differential equation

ex tan y dx + (1 + ex) sec2 y dy = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×