English

Solve the following differential equation: dydxxylog (dydx)=2x+3y - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`

Sum

Solution

`log  ("dy"/"dx") = 2"x" + 3"y"`

∴ `"dy"/"dx" = "e"^("2x" + "3y") = "e"^"2x"."e"^"3y"`

∴ `1/"e"^"3y" "dy" = "e"^"2x" "dx"`

Integrating both sides, we get

`int "e"^-"3y" "dy" = int "e"^"2x' "dx"`

∴ `int "e"^-3"y" "dy" = int "e"^"2x" "dx"`

∴ `("e"^(- "3y"))/-3 = "e"^"2x"/2 + "c"_1`

∴ `2"e"^-"3y" = - 3"e"^"2x" + 6"c"_1`

∴ `2"e"^-"3y" + 3"e"^"2x" = "c"`, where c = 6c1

This is the general solution.

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Miscellaneous exercise 2 [Page 217]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 6 Differential Equations
Miscellaneous exercise 2 | Q 5.1 | Page 217

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = a + `"a"/"x"`


Find the differential equation of all circles having radius 9 and centre at point (h, k).


Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`


Solve the following differential equation:

`(cos^2y)/x dy + (cos^2x)/y dx` = 0


Reduce the following differential equation to the variable separable form and hence solve:

`"dy"/"dx" = cos("x + y")`


Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`


Reduce the following differential equation to the variable separable form and hence solve:

`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`


Reduce the following differential equation to the variable separable form and hence solve:

(2x - 2y + 3)dx - (x - y + 1)dy = 0, when x = 0, y = 1.


Choose the correct option from the given alternatives:

The differential equation of y = `"c"^2 + "c"/"x"` is


Choose the correct option from the given alternatives:

x2 + y2 = a2 is a solution of


Choose the correct option from the given alternatives:

The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is


Choose the correct option from the given alternatives:

The solution of `("x + y")^2 "dy"/"dx" = 1` is


Choose the correct option from the given alternatives:

`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

`"y"^2 = "a"("b - x")("b + x")`


Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Solve the following differential equation:

`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


Find the particular solution of the following differential equation:

`2e ^(x/y) dx + (y - 2xe^(x/y)) dy = 0," When" y (0) = 1`


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


The general solution of `(dy)/(dx)` = e−x is ______.


Select and write the correct alternative from the given option for the question

The solution of `("d"y)/("d"x)` = 1 is


Find the differential equation of family of lines making equal intercepts on coordinate axes


Find the general solution of `("d"y)/("d"x) = (1 + y^2)/(1 + x^2)`


Form the differential equation of y = (c1 + c2)ex 


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is 


Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis


Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin


Find the differential equation of the curve represented by xy = aex + be–x + x2


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


Solve the following differential equation:

`xsin(y/x)dy = [ysin(y/x) - x]dx`


The differential equation of the family of circles touching Y-axis at the origin is ______.


A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×