Advertisements
Advertisements
Question
Find the differential equation of all circles having radius 9 and centre at point (h, k).
Solution
Equation of the circle having radius 9 and centre at point (h, k) is
(x - h)2 + (y - k)2 = 81, .....(1)
where h and k are arbitrary constant.
Differentiating (1) w.r.t. x, we get
`2("x - h") * "d"/"dx" ("x - h") + 2 ("y - k") * "d"/"dx" ("y - k") = 0`
∴ (x - h)(1 - 0) + (y - k)`("dy"/"dx" - 0) = 0`
∴ (x - h) + (y - k) `"dy"/"dx" = 0` .....(2)
Differentiating again w.r.t. x, we get
`"d"/"dx" ("x - h") + ("y - k") * "d"/"dx"("dy"/"dx") + "dy"/"dx" * "d"/"dx" ("y - k") = 0`
∴ `(1 - 0) + ("y - k") ("d"^2"y")/"dx"^2 + "dy"/"dx" * ("dy"/"dx" - 0) = 0`
∴ `("y - k") ("d"^2"y")/"dx"^2 + ("dy"/"dx")^2` + 1 = 0
∴ `("y - k") ("d"^2"y")/"dx"^2 = - [("dy"/"dx")^2 + 1]`
∴ `"y - k" = (- ("dy"/"dx")^2 + 1)/(("d"^2"y")/"dx"^2` ....(3)
From (2), x - h = - (y - k)`"dy"/"dx"`
Substituting the value of (x - h) in (1), we get
`("y - k")^2 ("dy"/"dx")^2 + ("y - k")^2 = 81`
∴ `("dy"/"dx")^2 + 1 = 81/("y - k")^2`
∴ `("dy"/"dx")^2 + 1 = (81 * ("d"^2"y")/"dx"^2)/[("dy"/"dx")^2 + 1]^2`
∴ `81 (("d"^2"y")/"dx"^2)^2 = [("dy"/"dx")^2 + 1]^3`
This is the required D.E.
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = c1e2x + c2e5x
Find the differential equation of the ellipse whose major axis is twice its minor axis.
In the following example verify that the given expression is a solution of the corresponding differential equation:
xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`
Solve the following differential equation:
`"y" - "x" "dy"/"dx" = 0`
Solve the following differential equation:
cos x . cos y dy − sin x . sin y dx = 0
Solve the following differential equation:
`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`
For the following differential equation find the particular solution satisfying the given condition:
3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.
Reduce the following differential equation to the variable separable form and hence solve:
`("x - y")^2 "dy"/"dx" = "a"^2`
Solve the following differential equation:
(x2 + y2)dx - 2xy dy = 0
Choose the correct option from the given alternatives:
x2 + y2 = a2 is a solution of
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`
The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = b(x + 4)
Solve the following differential equation:
`"dy"/"dx" = "x"^2"y" + "y"`
Solve the following differential equation:
`"dy"/"dx" = ("2y" - "x")/("2y + x")`
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Find the differential equation of family of lines making equal intercepts on coordinate axes
Form the differential equation of family of standard circle
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
Find the differential equation by eliminating arbitrary constants from the relation x2 + y2 = 2ax
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Find the differential equation of the family of all non-vertical lines in a plane
Find the differential equation of the family of all non-horizontal lines in a plane
Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be –8x, where A and B are arbitrary constants
Choose the correct alternative:
The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is
The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.
Solve the following differential equation:
`xsin(y/x)dy = [ysin(y/x) - x]dx`
The differential equation of all parabolas whose axis is Y-axis, is ______.
The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.
Form the differential equation whose general solution is y = a cos 2x + b sin 2x.
Solve the differential equation
ex tan y dx + (1 + ex) sec2 y dy = 0
Form the differential equation of all concentric circles having centre at the origin.