English

Choose the correct option from the given alternatives: The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct option from the given alternatives:

The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is

Options

  • `"y"^2 (1 + "dy"/"dx") = 25`

  • `("y - 5")^2 [1 + ("dy"/"dx")^2] = 25`

  • `("y - 5")^2 + [1 + ("dy"/"dx")^2] = 25`

  • `("y - 5")^2 [1 - ("dy"/"dx")^2] = 25`

MCQ

Solution

`("y - 5")^2 [1 + ("dy"/"dx")^2] = 25`

Hint: Equation of the circle is

(x - h)2 + (y - 5)2 = 52      ....(1)

∴ 2(x - h) + 2(y - 5)`"dy"/"dx" = 0`

∴ (x - h)2 = (y - 5)2 `("dy"/"dx")^2`

∴ 25 - (y - 5)2 = (y - 5)2 `("dy"/"dx")^2`    ...[By (1)]

∴ (y - 5)2 `[1 + ("dy"/"dx")^2] = 25`

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Miscellaneous exercise 1 [Page 215]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 6 Differential Equations
Miscellaneous exercise 1 | Q 1.04 | Page 215

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = 4(x - b)


Form the differential equation of family of lines having intercepts a and b on the co-ordinate ares respectively.


Find the differential equation of the ellipse whose major axis is twice its minor axis.


Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`


Solve the following differential equation:

`"sec"^2 "x" * "tan y"  "dx" + "sec"^2 "y" * "tan x"  "dy" = 0` 


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


Solve the following differential equation:

`2"e"^("x + 2y") "dx" - 3"dy" = 0`


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Choose the correct option from the given alternatives:

The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`


In the following example verify that the given function is a solution of the differential equation.

`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`


Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.


Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.


Solve the following differential equation:

`"dy"/"dx" = "x"^2"y" + "y"`


Solve the following differential equation:

x dy = (x + y + 1) dx


Solve the following differential equation:

`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


Find the differential equation of family of lines making equal intercepts on coordinate axes


Form the differential equation of y = (c1 + c2)ex 


Find the differential equation of family of all ellipse whose major axis is twice the minor axis


The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is 


The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.


Find the differential equation of the family of all non-vertical lines in a plane


Form the differential equation of all straight lines touching the circle x2 + y2 = r2


Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis


The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.


The differential equation of the family of circles touching Y-axis at the origin is ______.


If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2


A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×