Advertisements
Advertisements
Question
Choose the correct option from the given alternatives:
The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is
Options
`"y"^2 (1 + "dy"/"dx") = 25`
`("y - 5")^2 [1 + ("dy"/"dx")^2] = 25`
`("y - 5")^2 + [1 + ("dy"/"dx")^2] = 25`
`("y - 5")^2 [1 - ("dy"/"dx")^2] = 25`
Solution
`("y - 5")^2 [1 + ("dy"/"dx")^2] = 25`
Hint: Equation of the circle is
(x - h)2 + (y - 5)2 = 52 ....(1)
∴ 2(x - h) + 2(y - 5)`"dy"/"dx" = 0`
∴ (x - h)2 = (y - 5)2 `("dy"/"dx")^2`
∴ 25 - (y - 5)2 = (y - 5)2 `("dy"/"dx")^2` ...[By (1)]
∴ (y - 5)2 `[1 + ("dy"/"dx")^2] = 25`
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
(y - a)2 = 4(x - b)
Find the differential equation of the ellipse whose major axis is twice its minor axis.
Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = xm; `"x"^2 ("d"^2"y")/"dx"^2 - "mx" "dy"/"dx" + "my" = 0`
Solve the following differential equation:
`"sec"^2 "x" * "tan y" "dx" + "sec"^2 "y" * "tan x" "dy" = 0`
Solve the following differential equation:
`"dy"/"dx" = - "k",` where k is a constant.
Solve the following differential equation:
`2"e"^("x + 2y") "dx" - 3"dy" = 0`
Solve the following differential equation:
(x2 + y2)dx - 2xy dy = 0
Choose the correct option from the given alternatives:
The solution of the differential equation `"dy"/"dx" = sec "x" - "y" tan "x"`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 + "y"^2 = "r"^2; "x" "dy"/"dx" + "r" sqrt(1 + ("dy"/"dx")^2) = "y"`
In the following example verify that the given function is a solution of the differential equation.
`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 = "2y"^2 log "y", "x"^2 + "y"^2 = "xy" "dx"/"dy"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`
Form the differential equation of all parabolas which have 4b as latus rectum and whose axis is parallel to the Y-axis.
Form the differential equation of the hyperbola whose length of transverse and conjugate axes are half of that of the given hyperbola `"x"^2/16 - "y"^2/36 = "k"`.
Solve the following differential equation:
`"dy"/"dx" = "x"^2"y" + "y"`
Solve the following differential equation:
x dy = (x + y + 1) dx
Solve the following differential equation:
`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Find the particular solution of the following differential equation:
(x + y)dy + (x - y)dx = 0; when x = 1 = y
Select and write the correct alternative from the given option for the question
Solution of the equation `x ("d"y)/("d"x)` = y log y is
Find the differential equation of family of lines making equal intercepts on coordinate axes
Form the differential equation of y = (c1 + c2)ex
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is
The family of curves y = `e^("a" sin x)`, where a is an arbitrary constant, is represented by the differential equation.
Find the differential equation of the family of all non-vertical lines in a plane
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis
The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.
The differential equation of the family of circles touching Y-axis at the origin is ______.
If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2
A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.