Advertisements
Advertisements
Question
Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis
Solution
Given the equation of family of parabolas with latus rectum 4a and axes are parallel to x-axis then
(y – b)2 = 4a(x – a), where (a, b) is the vertex of parabola.
y2 – 2yb + b2 = 4ax – 4a2 ........(1)
Differentiating equation (1) with respect to x, we get
`2y ("d"y)/("d"x) - 2"b" ("d"y)/("d"x) + 0 = 4"a" - 0`
`2(y ("d"y)/("d"x) - "b" ("d"y)/("d"x))` = 4a
`("d"y)/("d"x) (y - "b") = (4"a")/2`
`("d"y)/("d"x) (y - "b")` = 2a
`y ("d"y)/("d"x) - 2"a" = "b" ("d"y)/("d"x)`
∵ `("d"y)/("d"x)` = y'
∴ yy' – 2a = by' .......(2)
Differentiating equation (2) with respect to ‘x’, we get
yy”+ y’y’ = by”
yy” + y’2 = by” ……. (3)
Substituting the b value in (3), we get
yy'' + (y')2 = `((yy"'" - 2"a")/(y"'"))y"''"`
`yy"''" + (y"'")^2 - y"''" ((yy"''" - 2"a")/(y"'"))` = 0
`yy"''" + (y"'")^2 - (yy"''"y"'")/y + (2"a"y"''")/(y"'")` = 0
`yy"''" + (y"'")^2 - yy"''" + (2"a"y"''")/(y"'")` = 0
`(y"'")^2 + (2"a"y"''")/(y"'")` = 0
Multiply by y', we get
`(y"'")^3 + (2"a"y"''" xx y"'")/(y"'")` = 0
(y')3 + 2ay'' = 0
Which is a required differential equation.
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = e−2x (A cos x + B sin x)
Solve the following differential equation:
`"y" - "x" "dy"/"dx" = 0`
Choose the correct option from the given alternatives:
The solution of `("x + y")^2 "dy"/"dx" = 1` is
Choose the correct option from the given alternatives:
The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`
Solve the following differential equation:
`"dy"/"dx" = "x"^2"y" + "y"`
Solve the following differential equation:
y log y = (log y2 - x) `"dy"/"dx"`
Solve the following differential equation:
`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`
Select and write the correct alternative from the given option for the question
General solution of `y - x ("d"y)/("d"x)` = 0 is
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
Find the differential equation of the family of all non-horizontal lines in a plane
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
If `x^2 y^2 = sin^-1 sqrt(x^2 + y^2) + cos^-1 sqrt(x^2 + y^2)`, then `"dy"/"dx"` = ?
The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.
The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.
Solve the differential equation
cos2(x – 2y) = `1 - 2dy/dx`
If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2
Form the differential equation whose general solution is y = a cos 2x + b sin 2x.
Form the differential equation of all concentric circles having centre at the origin.