English

Reduce the following differential equation to the variable separable form and hence solve: x + ydydxxyx + ydydx=sec(x2+y2) - Mathematics and Statistics

Advertisements
Advertisements

Question

Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`

Sum

Solution

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`   ....(1)

Put x2 + y2 = u

∴ 2x + 2y`"dy"/"dx" = "du"/"dx"`

∴ x + y`"dy"/"dx" = 1/2 * "du"/"dx"`

∴ (1) becomes, `1/2 * "du"/"dx" = sec"u"`

∴ `1/(sec "u") = 2 * "dx"`

Integrating both sides, we get

∫ cos u du = 2 ∫ dx

∴ sin u = 2x + c

∴ sin (x2 + y2) = 2x + c

This is the general solution.

shaalaa.com
Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Exercise 6.3 [Page 201]

APPEARS IN

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

x3 + y3 = 4ax


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = 4(x - b)


Find the differential equation of the ellipse whose major axis is twice its minor axis.


Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.


In the following example verify that the given expression is a solution of the corresponding differential equation:

xy = log y +c; `"dy"/"dx" = "y"^2/(1 - "xy")`


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`


Solve the following differential equation:

cos x . cos y dy − sin x . sin y dx = 0


Solve the following differential equation:

`2"e"^("x + 2y") "dx" - 3"dy" = 0`


For the following differential equation find the particular solution satisfying the given condition:

`(e^y + 1) cos x + e^y sin x. dy/dx = 0,  "when" x = pi/6,` y = 0


For the following differential equation find the particular solution satisfying the given condition:

`cos("dy"/"dx") = "a", "a" ∈ "R", "y"(0) = 2`


Reduce the following differential equation to the variable separable form and hence solve:

`cos^2 ("x - 2y") = 1 - 2 "dy"/"dx"`


Solve the following differential equation:

(x2 + y2)dx - 2xy dy = 0


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


In the following example verify that the given function is a solution of the differential equation.

`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = b(x + 4)


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `sqrt("a" cos (log "x") + "b" sin (log "x"))`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`


Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.


Find the particular solution of the following differential equation:

(x + y)dy + (x - y)dx = 0; when x = 1 = y


Find the particular solution of the following differential equation:

y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2


Select and write the correct alternative from the given option for the question

General solution of `y - x ("d"y)/("d"x)` = 0 is


Form the differential equation of family of standard circle


The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is 


Find the differential equation of the family of circles passing through the origin and having their centres on the x-axis


Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis


Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be 8x, where A and B are arbitrary constants


The general solution of the differential equation of all circles having centre at A(- 1, 2) is ______.


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


Solve the following differential equation:

`xsin(y/x)dy = [ysin(y/x) - x]dx`


The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.


The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.


If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2


Form the differential equation whose general solution is y = a cos 2x + b sin 2x.


Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.


Form the differential equation of all concentric circles having centre at the origin.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×