English

Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0. - Mathematics and Statistics

Advertisements
Advertisements

Question

Form the differential equation of all the lines which are normal to the line 3x + 2y + 7 = 0.

Sum

Solution

Slope of the line 3x - 2y + 7 = 0 is `(- 3)/-2 = 3/2`

∴ slope of normal to this line is `- 2/3`

Then the equation of the normal is

y = `- 2/3 "x" + "k"`, where k is an arbitrary constant.

Differentiating w.r.t. x, we get

`"dy"/"dx" = - 2/3 xx 1 + 0`

∴ `3"dy"/"dx" + 2 = 0`

This is the required D.E.

shaalaa.com

Notes

The answer in the textbook is incorrect.

Formation of Differential Equations
  Is there an error in this question or solution?
Chapter 6: Differential Equations - Miscellaneous exercise 2 [Page 217]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 6 Differential Equations
Miscellaneous exercise 2 | Q 4.4 | Page 217

RELATED QUESTIONS

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

Ax2 + By2 = 1


Find the differential equation of the ellipse whose major axis is twice its minor axis.


Find the differential equation of all circles having radius 9 and centre at point (h, k).


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`


Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`


Solve the following differential equation:

`"y" - "x" "dy"/"dx" = 0`


Solve the following differential equation:

`"sec"^2 "x" * "tan y"  "dx" + "sec"^2 "y" * "tan x"  "dy" = 0` 


Solve the following differential equation:

cos x . cos y dy − sin x . sin y dx = 0


For the following differential equation find the particular solution satisfying the given condition:

3ex tan y dx + (1 + ex) sec2 y dy = 0, when x = 0, y = π.


For the following differential equation find the particular solution satisfying the given condition:

`y(1 + log x) dx/dy - x log x = 0, y = e^2,` when x = e


Reduce the following differential equation to the variable separable form and hence solve:

`("x - y")^2 "dy"/"dx" = "a"^2`


Choose the correct option from the given alternatives:

The solution of `("x + y")^2 "dy"/"dx" = 1` is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" = ("y" + sqrt("x"^2 - "y"^2))/"x"` is


Choose the correct option from the given alternatives:

The solution of `"dy"/"dx" + "y" = cos "x" - sin "x"`


Choose the correct option from the given alternatives:

`"x"^2/"a"^2 - "y"^2/"b"^2 = 1` is a solution of


In the following example verify that the given function is a solution of the differential equation.

`"x"^2 = "2y"^2 log "y",  "x"^2 + "y"^2 = "xy" "dx"/"dy"`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

(y - a)2 = b(x + 4)


Solve the following differential equation:

y log y = (log y2 - x) `"dy"/"dx"`


Find the particular solution of the following differential equation:

y(1 + log x) = (log xx) `"dy"/"dx"`, when y(e) = e2


The general solution of `(dy)/(dx)` = e−x is ______.


Select and write the correct alternative from the given option for the question

The solution of `("d"y)/("d"x)` = 1 is


Select and write the correct alternative from the given option for the question 

The solutiion of `("d"y)/("d"x) + x^2/y^2` = 0 is


Find the differential equation of family of lines making equal intercepts on coordinate axes


Find the differential equation of family of all ellipse whose major axis is twice the minor axis


Find the differential equation by eliminating arbitrary constants from the relation y = (c1 + c2x)ex 


Find the differential equation of the family of all non-vertical lines in a plane


Find the differential equation of the family of all non-horizontal lines in a plane 


Find the differential equation of the curve represented by xy = aex + be–x + x2


The rate of disintegration of a radio active element at time t is proportional to its mass, at the time. Then the time during which the original mass of 1.5 gm. Will disintegrate into its mass of 0.5 gm. is proportional to ______.


The elimination of the arbitrary constant m from the equation y = emx gives the differential equation ______.


For the curve C: (x2 + y2 – 3) + (x2 – y2 – 1)5 = 0, the value of 3y' – y3 y", at the point (α, α), α < 0, on C, is equal to ______.


The differential equation representing the family of ellipse having foci either on the x-axis or on the y-axis centre at the origin and passing through the point (0, 3) is ______.


Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×