Advertisements
Advertisements
Question
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = Ae5x + Be-5x
Solution
y = Ae5x + Be-5x ...(1)
Differentiating twice w.r.t. x, we get
`"dy"/"dx" = "Ae"^"5x" xx 5 + "Be"^(- "5x") xx (- 5)`
∴ `"dy"/"dx" = 5"Ae"^"5x" - 5"Be"^(- "5x")`
and `("d"^2"y")/"dx"^2 = "Ae"^"5x" xx 5 + "Be"^(- "5x") xx (- 5)`
`= 25"Ae"^"5x" + 25"Be"^(- "5x")`
`= 25("Ae"^"5x" + "Be"^(- "5x")) = 25"y"` ....[By(1)]
∴ `("d"^2"y")/"dx"^2 - 25"y" = 0`
This is the required D.E.
APPEARS IN
RELATED QUESTIONS
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y2 = (x + c)3
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = c1e2x + c2e5x
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
c1x3 + c2y2 = 5
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = e−2x (A cos x + B sin x)
Form the differential equation of family of lines parallel to the line 2x + 3y + 4 = 0.
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = e-x + Ax + B; `"e"^"x" ("d"^2"y")/"dx"^2 = 1`
In the following example verify that the given expression is a solution of the corresponding differential equation:
y = `"e"^"ax"; "x" "dy"/"dx" = "y" log "y"`
Solve the following differential equation:
`"y" - "x" "dy"/"dx" = 0`
Solve the following differential equation:
`2"e"^("x + 2y") "dx" - 3"dy" = 0`
Solve the following differential equation:
`"dy"/"dx" = "e"^("x + y") + "x"^2 "e"^"y"`
For the following differential equation find the particular solution satisfying the given condition:
`("x" + 1) "dy"/"dx" - 1 = 2"e"^-"y" , "y" = 0`, when x = 1
Reduce the following differential equation to the variable separable form and hence solve:
`"dy"/"dx" = cos("x + y")`
Choose the correct option from the given alternatives:
x2 + y2 = a2 is a solution of
In the following example verify that the given function is a solution of the differential equation.
`"y" = "e"^"ax" sin "bx"; ("d"^2"y")/"dx"^2 - 2"a" "dy"/"dx" + ("a"^2 + "b"^2)"y" = 0`
In the following example verify that the given function is a solution of the differential equation.
`"xy" = "ae"^"x" + "be"^-"x" + "x"^2; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" + "x"^2 = "xy" + 2`
In the following example verify that the given function is a solution of the differential equation.
`"x"^2 = "2y"^2 log "y", "x"^2 + "y"^2 = "xy" "dx"/"dy"`
Obtain the differential equation by eliminating the arbitrary constants from the following equation:
y = a sin (x + b)
Solve the following differential equation:
`"dy"/"dx" = ("2y" - "x")/("2y + x")`
Solve the following differential equation:
x dy = (x + y + 1) dx
Solve the following differential equation:
`"dy"/"dx" + "y cot x" = "x"^2 "cot x" + "2x"`
Solve the following differential equation:
`"dx"/"dy" + "8x" = 5"e"^(- 3"y")`
Find the particular solution of the following differential equation:
`"dy"/"dx" - 3"y" cot "x" = sin "2x"`, when `"y"(pi/2) = 2`
Select and write the correct alternative from the given option for the question
The solution of `("d"y)/("d"x)` = 1 is
Form the differential equation of family of standard circle
Find the differential equation of family of all ellipse whose major axis is twice the minor axis
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Form the differential equation of all straight lines touching the circle x2 + y2 = r2
Find the differential equations of the family of all the ellipses having foci on the y-axis and centre at the origin
Find the differential equation corresponding to the family of curves represented by the equation y = Ae8x + Be –8x, where A and B are arbitrary constants
The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.
The differential equation representing the family of parabolas having vertex at origin and axis along positive direction of X-axis is ______.
The differential equation of all parabolas whose axis is Y-axis, is ______.
The differential equation of all circles passing through the origin and having their centres on the X-axis is ______.
The differential equation of all parabolas having vertex at the origin and axis along positive Y-axis is ______.
Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.