मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Obtain the differential equation by eliminating the arbitrary constants from the following equation: c1x3 + c2y2 = 5 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

c1x3 + c2y2 = 5

बेरीज

उत्तर

c1x3 + c2y2 = 5       .....(1)

Differentiating twice w.r.t. x, we get

`"c"_1 xx "3x"^2 + "c"_2 xx "2y" "dy"/"dx" = 0`

∴ `3"c"_1"x"^2 + 2"c"_2"y" "dy"/"dx" = 0` ....(2)

Differentiating again w.r.t. x, we get

`3"c"_1 xx "2x" + 2"c"_2 ["y"."d"/"dx"("dy"/"dx") + "dy"/"dx" * "dy"/"dx"] = 0`

∴ `6"c"_1"x" + 2"c"_2 ["y" ("d"^2"y")/"dx"^2 + ("dy"/"dx")^2] = 0`

The equations (1), (2) and (3) in c1, c2 are consistent.

∴ determinant of their consistency is zero.

∴ `|("x"^3, "y"^2, 5),("3x"^2, "2y""dy"/"dx", 0),(6"x", "2y" ("d"^2"y")/"dx"^2 + 2("dy"/"dx")^2, 0)|`

∴ `"x"^3 (0 - 0) - "y"^2(0 - 0) + 5["6x"^2"y" ("d"^2"y")/"dx"^2 + "6x"^2("dy"/"dx")^2 - 12"xy" "dy"/"dx"] = 0`

∴ `"6x"^2"y" ("d"^2"y")/"dx"^2 + "6x"^2("dy"/"dx")^2 - 12"xy" "dy"/"dx" = 0`

∴ `"xy" ("d"^2"y")/"dx"^2 + "x"("dy"/"dx")^2 - "2y" "dy"/"dx" = 0`

This is the required D.E.

shaalaa.com

Notes

The answer in the textbook is incorrect.

Formation of Differential Equations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Differential Equations - Exercise 6.2 [पृष्ठ १९६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Differential Equations
Exercise 6.2 | Q 1.09 | पृष्ठ १९६

संबंधित प्रश्‍न

Obtain the differential equation by eliminating the arbitrary constants from the following equation:

Ax2 + By2 = 1


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y2 = (x + c)3


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = Ae5x + Be-5x 


Form the differential equation of all parabolas whose axis is the X-axis.


In the following example verify that the given expression is a solution of the corresponding differential equation:

y = `"a" + "b"/"x"; "x" ("d"^2"y")/"dx"^2 + 2 "dy"/"dx" = 0`


Solve the following differential equation:

`log  ("dy"/"dx") = 2"x" + 3"y"`


Solve the following differential equation:

`"y" - "x" "dy"/"dx" = 0`


Solve the following differential equation:

`"sec"^2 "x" * "tan y"  "dx" + "sec"^2 "y" * "tan x"  "dy" = 0` 


Solve the following differential equation:

`"dy"/"dx" = - "k",` where k is a constant.


Solve the following differential equation:

`(cos^2y)/x dy + (cos^2x)/y dx` = 0


Reduce the following differential equation to the variable separable form and hence solve:

`"x + y""dy"/"dx" = sec("x"^2 + "y"^2)`


Choose the correct option from the given alternatives:

The differential equation of y = `"c"^2 + "c"/"x"` is


Choose the correct option from the given alternatives:

The differential equation of all circles having their centres on the line y = 5 and touching the X-axis is


Choose the correct option from the given alternatives:

The solution of `("x + y")^2 "dy"/"dx" = 1` is


The integrating factor of linear differential equation `x dy/dx + 2y = x^2 log x` is ______.


The particular solution of `dy/dx = xe^(y - x)`, when x = y = 0 is ______.


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

`"y"^2 = "a"("b - x")("b + x")`


In the following example verify that the given function is a solution of the differential equation.

`"y" = 3 "cos" (log "x") + 4 sin (log "x"); "x"^2 ("d"^2"y")/"dx"^2 + "x" "dy"/"dx" + "y" = 0`


Obtain the differential equation by eliminating the arbitrary constants from the following equation:

y = `"Ae"^(3"x" + 1) + "Be"^(- 3"x" + 1)`


Select and write the correct alternative from the given option for the question

Solution of the equation `x  ("d"y)/("d"x)` = y log y is


The general solution of `(dy)/(dx)` = e−x is ______.


The differential equation having y = (cos-1 x)2 + P (sin-1 x) + Q as its general solution, where P and Q are arbitrary constants, is 


Find the differential equation of the family of all non-horizontal lines in a plane 


Form the differential equation of all straight lines touching the circle x2 + y2 = r2


Find the differential equation of the family of all the parabolas with latus rectum 4a and whose axes are parallel to the x-axis


Find the differential equation of the family of parabolas with vertex at (0, –1) and having axis along the y-axis


Choose the correct alternative:

The slope at any point of a curve y = f(x) is given by `("d"y)/("d"x) - 3x^2` and it passes through (-1, 1). Then the equation of the curve is


The differential equation of all lines perpendicular to the line 5x + 2y + 7 = 0 is ____________.


The differential equation for all the straight lines which are at the distance of 2 units from the origin is ______.


The differential equation for a2y = log x + b, is ______.


If 2x = `y^(1/m) + y^(-1/m)`, then show that `(x^2 - 1) (dy/dx)^2` = m2y2


Find the particular solution of the differential equation `x^2 dy/dx + y^2 = xy dy/dx`, if y = 1 when x = 1.


Form the differential equation of all concentric circles having centre at the origin.


A particle is moving along the X-axis. Its acceleration at time t is proportional to its velocity at that time. Find the differential equation of the motion of the particle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×