Advertisements
Advertisements
Question
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solution
`(x + 1) dy/dx -1 = 2e^(-y)`
∴ `(x + 1) dy /dx = 2/e^y + 1`
∴ `(x + 1) dy /dx = ((2+e^y))/e^y `
∴ `e^y /(2+e^y) dy= dx/(1+x)`
Integrating on both sides, we get
`int e^y/(2+e^y) dy = intdx/(1+x)`
∴ log| 2 + ey| = log |1 + x| + log |c|
∴ log |2 + ey| = log |c(1 + x)|
∴ 2 + ey = c (1 + x) ...(i)
When y = 0, x = 1, we have
2 + e0 = c (1 + 1)
∴ 2 + 1 = 2c
∴ c = `3/2`
Substituting c = `3/2` in (i), we get
`2 + e^y = 3/ 2 (1 + x)`
∴ 4 + 2ey = 3 + 3x
∴ 3x - 2ey - 1 = 0, which is the required particular solution.
APPEARS IN
RELATED QUESTIONS
x cos2 y dx = y cos2 x dy
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.
x2y dx – (x3 + y3) dy = 0
Solve the differential equation `("d"y)/("d"x) + y` = e−x
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.