Advertisements
Advertisements
Question
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
Options
e−x
e−y
\[\frac{1}{x}\]
x
Solution
\[ \Rightarrow \frac{dy}{dx} - \frac{1}{x}y = 2x\]
\[\text{ Comparing with }\frac{dy}{dx} + Py = Q,\text{ we get }\]
\[P = - \frac{1}{x} \]
\[Q = 2x\]
Now,
\[I . F . = e^{- \int\frac{1}{x}dy} \]
\[ = e^{- \log\left| x \right|} \]
\[ = e^{log\left| \frac{1}{x} \right|} \]
\[ = \frac{1}{x}\]
APPEARS IN
RELATED QUESTIONS
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
xy dy = (y − 1) (x + 1) dx
y (1 + ex) dy = (y + 1) ex dx
dy + (x + 1) (y + 1) dx = 0
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.
Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
Choose the correct alternative.
The solution of `x dy/dx = y` log y is
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
y dx – x dy + log x dx = 0
Solve: `("d"y)/("d"x) + 2/xy` = x2
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
Solve the differential equation `"dy"/"dx" + 2xy` = y
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?