Advertisements
Advertisements
Question
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solution
y2 dx + (xy + x2 ) dy = 0
∴ (xy + x2 ) dy = - y2 dx
∴`dy/dx = (-y^2)/(xy+x^2)` ...(i)
Put y = tx ...(ii)
Differentiating w.r.t. x, we get
`dy/dx = t + x dt/dx` ...(iii)
Substituting (ii) and (iii) in (i), we get
`t + x dt/dx = (-t^2x^2)/(x.tx+x^2)`
∴`t + x dt/dx = (-t^2x^2)/(tx^2+x^2)`
∴ `t + x dt/dx = (-t^2x^2)/(x^2(t+1)`
∴ ` x dt/dx = (-t^2)/(t+1)-t`
∴ ` x dt/dx = (-t^2-t^2-t)/(t+1)`
∴ ` x dt/dx = (-(2t^2+t))/(t+1)`
∴ `(t+1)/(2t^2+t)dt = - 1/x dx`
Integrating on both sides, we get
`int (t+1)/(2t^2+t)dt = -int1/xdx`
∴`int (2t + 1 - t)/(t(2t+1)) dt = - int1/xdx`
∴`int1/tdt-int 1/ (2t+1) dt = -int1/ x dx`
∴ log | t | - `1/2` log |2t + 1| = - log |x| + log |c|
∴ 2log| t | - log |2t + 1| = - 2log |x| + 2 log |c|
∴ `2log |y/x | -log |(2y)/x+ 1 |= - 2log |x| + 2 log |c|`
∴ 2log |y| - 2log |x| - log |2y + x| + log |x|
= -2log |x| + 2log |c|
∴ log |y2 | + log |x| = log |c2 | + log |2y + x|
∴ log |y2 x| = log | c2 (x + 2y)|
∴ xy 2 = c2 (x + 2y)
APPEARS IN
RELATED QUESTIONS
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
x2 dy + y (x + y) dx = 0
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by
Solve the following differential equation.
`dy/dx + y` = 3
Solve:
(x + y) dy = a2 dx
y dx – x dy + log x dx = 0
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is