English

Solve the following differential equation. y2 dx + (xy + x2 ) dy = 0 - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0

Sum

Solution

y2 dx + (xy + x2 ) dy = 0

∴ (xy + x2 ) dy = - y2 dx

∴`dy/dx = (-y^2)/(xy+x^2)`  ...(i)

Put y = tx  ...(ii)

Differentiating w.r.t. x, we get

`dy/dx = t + x dt/dx`  ...(iii)

Substituting (ii) and (iii) in (i), we get

`t + x dt/dx  = (-t^2x^2)/(x.tx+x^2)` 

∴`t + x dt/dx  = (-t^2x^2)/(tx^2+x^2)`

∴  `t + x dt/dx  = (-t^2x^2)/(x^2(t+1)`

∴  ` x dt/dx  = (-t^2)/(t+1)-t`

∴ ` x dt/dx  = (-t^2-t^2-t)/(t+1)`

∴ ` x dt/dx  = (-(2t^2+t))/(t+1)`

∴ `(t+1)/(2t^2+t)dt = - 1/x dx`

Integrating on both sides, we get

`int (t+1)/(2t^2+t)dt = -int1/xdx`

∴`int (2t + 1 - t)/(t(2t+1)) dt = - int1/xdx`

∴`int1/tdt-int  1/ (2t+1) dt = -int1/ x dx`

∴ log | t | - `1/2` log |2t + 1| = - log |x| + log |c|

∴ 2log| t | - log |2t + 1| = - 2log |x| + 2 log |c|

∴ `2log |y/x | -log |(2y)/x+ 1 |= - 2log |x| + 2 log |c|`

∴ 2log |y| - 2log |x| - log |2y + x| + log |x|

= -2log |x| + 2log |c|

∴ log |y2 | + log |x| = log |c2 | + log |2y + x|

∴ log |y2 x| = log | c2 (x + 2y)|

∴ xy 2 = c2 (x + 2y)

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Differential Equation and Applications - Exercise 8.4 [Page 167]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 8 Differential Equation and Applications
Exercise 8.4 | Q 1.2 | Page 167

RELATED QUESTIONS

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]


x2 dy + y (x + y) dx = 0


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


Solve the following differential equation.

`dy/dx + y` = 3


Solve:

(x + y) dy = a2 dx


y dx – x dy + log x dx = 0


Choose the correct alternative:

Solution of the equation `x("d"y)/("d"x)` = y log y is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×