Advertisements
Advertisements
Question
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Solution
The equation of the family of parabolas with latus rectum \[4a\] and axis parallel to the x-axis is given by
\[\left( y - \beta \right)^2 = 4a\left( x - \alpha \right)..............(1)\]
where \[\alpha\text{ and }\beta\] are two arbitrary constants.
As this equation has two arbitrary constants, we shall get second order differential equation.
Differentiating equation (1) with respect to x, we get
Differentiating equation (2) with respect to x, we get
Now, from equation (2), we get
From (3) and (4), we get
\[\frac{2a}{\frac{dy}{dx}}\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 0\]
\[ \Rightarrow 2a\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^3 = 0 \]
It is the required differential equation.
APPEARS IN
RELATED QUESTIONS
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x + y\frac{dy}{dx} = 0\]
|
\[y = \pm \sqrt{a^2 - x^2}\]
|
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
(sin x + cos x) dy + (cos x − sin x) dx = 0
C' (x) = 2 + 0.15 x ; C(0) = 100
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
(xy2 + 2x) dx + (x2 y + 2y) dy = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
Define a differential equation.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Solve the following differential equation.
`dy/dx = x^2 y + y`
x2y dx – (x3 + y3) dy = 0
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.