Advertisements
Advertisements
Question
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solution
`dy/dx = x^2 y + y = (x^2 +1)y`
∴ `1/y dy = (x^2 + 1)dx`
Integrating on both sides, we get
` int 1/y dy = int (x^2+1) dx`
∴ `log | y | = x^3/3 + x + c`
APPEARS IN
RELATED QUESTIONS
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
xy dy = (y − 1) (x + 1) dx
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
(y2 − 2xy) dx = (x2 − 2xy) dy
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.
Solve the following differential equation.
dr + (2r)dθ= 8dθ
The solution of `dy/ dx` = 1 is ______
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
Solution of `x("d"y)/("d"x) = y + x tan y/x` is `sin(y/x)` = cx