English

The Equation of the Curve Whose Slope is Given by D Y D X = 2 Y X ; X > 0 , Y > 0 and Which Passes Through the Point (1, 1) is - Mathematics

Advertisements
Advertisements

Question

The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is

Options

  • x2 = y

  • y2 = x

  • x2 = 2y

  • y2 = 2x

MCQ

Solution

x2 = y

 

We have,
\[\frac{dy}{dx} = \frac{2y}{x}\]
\[ \Rightarrow \frac{1}{2} \times \frac{1}{y}dy = \frac{1}{x}dx\]
Integrating both sides, we get
\[\frac{1}{2}\int\frac{1}{y}dy = \int\frac{1}{x}dx\]
\[ \Rightarrow \frac{1}{2}\log y = \log x + \log C\]
\[ \Rightarrow \log y^\frac{1}{2} - \log x = \log C\]
\[ \Rightarrow \log\left( \frac{\sqrt{y}}{x} \right) = \log C\]
\[ \Rightarrow \frac{\sqrt{y}}{x} = C\]
\[ \Rightarrow \sqrt{y} = Cx . . . . . \left( 1 \right)\]
\[\text{ As }\left( 1 \right)\text{ passes through (1, 1), we get }\]
\[ \therefore 1 = C\]
\[\text{ Putting the value of C in }\left( 1 \right),\text{ we get }\]
\[\sqrt{y} = x\]
\[ \Rightarrow y = x^2 \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - MCQ [Page 140]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
MCQ | Q 8 | Page 140

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

\[\frac{dy}{dx} = x^5 + x^2 - \frac{2}{x}, x \neq 0\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\]

tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


\[\frac{dy}{dx} = \left( x + y \right)^2\]

x2 dy + y (x + y) dx = 0


\[\frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]

2xy dx + (x2 + 2y2) dy = 0


\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.


The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


Choose the correct option from the given alternatives:

The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation.

dr + (2r)dθ= 8dθ


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Solve the following differential equation y2dx + (xy + x2) dy = 0


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×