English

Solve the Following Initial Value Problem: X D Y D X − Y = ( X + 1 ) E − X , Y ( 1 ) = 0 - Mathematics

Advertisements
Advertisements

Question

Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]

Sum

Solution

We have,
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} \]
\[ \Rightarrow \frac{dy}{dx} - \frac{1}{x}y = \left( \frac{x + 1}{x} \right) e^{- x} . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form 
\[\frac{dy}{dx} + Py = Q\]
\[\text{where }P = - \frac{1}{x}\text{ and }Q = \frac{x + 1}{x} e^{- x} \]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{- \int\frac{1}{x} dx} \]
\[ = e^{- \log x} \]
\[ = \frac{1}{x}\]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }I . F . = \frac{1}{x},\text{ we get }\]
\[\frac{1}{x} \left( \frac{dy}{dx} - \frac{1}{x}y \right) = \frac{1}{x}\left( \frac{x + 1}{x} \right) e^{- x} \]
\[ \Rightarrow \frac{1}{x} \left( \frac{dy}{dx} - \frac{1}{x}y \right) = \left( \frac{x + 1}{x^2} \right) e^{- x} \]
Integrating both sides with respect to x, we get
\[\frac{1}{x}y = \int\left( \frac{1}{x} + \frac{1}{x^2} \right) e^{- x} dx + C\]
\[\text{ Putting }\frac{1}{x} e^{- x} = t\]
\[ \Rightarrow \left( - \frac{1}{x} e^{- x} - \frac{1}{x^2} e^{- x} \right)dx = dt\]
\[ \Rightarrow \left( \frac{1}{x} + \frac{1}{x^2} \right) e^{- x} dx = - dt\]
\[ \therefore \frac{1}{x}y = \int - dt + C\]
\[ \Rightarrow \frac{y}{x} = - t + C\]
\[ \Rightarrow \frac{y}{x} = - \frac{e^{- x}}{x} + C\]
\[ \Rightarrow y = - e^{- x} + Cx . . . . . \left( 2 \right)\]
Now,
\[y\left( 1 \right) = 0\]
\[ \therefore 0 = - e^{- 1} + C\]
\[ \Rightarrow C = e^{- 1} \]
\[\text{Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[y = - e^{- x} + x e^{- 1} \]
\[ \Rightarrow y = x e^{- 1} - e^{- x} \]
\[\text{Hence, }y = x e^{- 1} - e^{- x}\text{ is the required solution.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.10 [Page 107]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.10 | Q 37.04 | Page 107

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\left( x^2 + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \log x\]

\[\frac{dy}{dx} = \cos^3 x \sin^2 x + x\sqrt{2x + 1}\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

x cos2 y  dx = y cos2 x dy


tan y dx + sec2 y tan x dy = 0


\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


(y2 − 2xy) dx = (x2 − 2xy) dy


\[\frac{dy}{dx} = \frac{x}{2y + x}\]

Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve

`dy/dx + 2/ x y = x^2`


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


The function y = ex is solution  ______ of differential equation


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×