English

Solve the Following Initial Value Problem:- D Y D X + 2 Y Tan X = Sin X ; Y = 0 When X = π 3 - Mathematics

Advertisements
Advertisements

Question

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]

Sum

Solution

We have, 
\[\frac{dy}{dx} + 2y \tan x = \sin x . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form 
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = 2\tan x\text{ and }Q = \sin x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{2\int\tan x dx} \]
\[ = e^{2\log\left| \sec x \right|} = \sec^2 x\]
\[\text{Multiplying both sides of }(1)\text{ by }I.F. = \sec^2 x, \text{ we get }\]
\[ \sec^2 x \left( \frac{dy}{dx} + 2y \tan x \right) = \sec^2 x \times \sin x\]
\[ \Rightarrow \sec^2 x \left( \frac{dy}{dx} + 2y \tan x \right) = \tan x \sec x\]
Integrating both sides with respect to x, we get
\[y \sec^2 x = \int\tan x \sec x dx + C\]
\[ \Rightarrow y \sec^2 x = \sec x + C . . . . . \left( 2 \right)\]
Now, 
\[y\left( \frac{\pi}{3} \right) = 0\]
\[ \therefore 0 \left( \sec\frac{\pi}{3} \right)^2 = \sec\frac{\pi}{3} + C\]
\[ \Rightarrow C = - 2\]
\[\text{ Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[y \sec^2 x = \sec x - 2\]
\[ \Rightarrow y = \cos x - 2 \cos^2 x\]
\[\text{ Hence, }y = \cos x - 2 \cos^2 x\text{ is the required solution.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.10 [Page 107]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.10 | Q 37.09 | Page 107

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\frac{dy}{dx} = \frac{1 - \cos 2y}{1 + \cos 2y}\]

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[\frac{dy}{dx} = 1 - x + y - xy\]

Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


\[\frac{dy}{dx} = \tan\left( x + y \right)\]

In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Determine the order and degree of the following differential equations.

Solution D.E
y = aex + be−x `(d^2y)/dx^2= 1`

For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


The solution of `dy/dx + x^2/y^2 = 0` is ______


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Solve the following differential equation y2dx + (xy + x2) dy = 0


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Solve: ydx – xdy = x2ydx.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


Solve the differential equation

`x + y dy/dx` = x2 + y2


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×