English

Differential Equation D 2 Y D X 2 − D Y D X = 0 , Y ( 0 ) = 2 , Y ′ ( 0 ) = 1 Function Y = Ex + 1 - Mathematics

Advertisements
Advertisements

Question

Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1

Sum

Solution

We have,

\[y = e^x + 1...........(1)\]

Differentiating both sides of (1) with respect to X, we get

\[\frac{dy}{dx} = e^x............(2)\]

Differentiating both sides of (2) with respect to X, we get

\[\frac{d^2 y}{d x^2} = e^x \]

\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{dy}{dx} ..........\left[ \text{Using (2)}\right]\]

\[ \Rightarrow \frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0 \]

It is the given differential equation.

\[y = e^x + 1\] satisfies the given differential equation; hence, it is a solution.

Also, when \[x = 0, y = e^0 + 1 = 1 + 1 = 2,\text{ i.e. }y(0) = 2\]

And, when \[x = 0, y' = e^0 = 1,\text{ i.e. }y'(0) = 1\]

Hence, \[y = e^x + 1\] is the solution to the given initial value problem.

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.04 [Page 28]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.04 | Q 4 | Page 28

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} = \tan^{- 1} x\]


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

(ey + 1) cos x dx + ey sin x dy = 0


x cos2 y  dx = y cos2 x dy


(1 − x2) dy + xy dx = xy2 dx


tan y dx + sec2 y tan x dy = 0


\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[xy\frac{dy}{dx} = \left( x + 2 \right)\left( y + 2 \right), y\left( 1 \right) = - 1\]

In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

y ex/y dx = (xex/y + y) dy


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]


The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Choose the correct alternative:

Differential equation of the function c + 4yx = 0 is


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×