English

In a Simple Circuit of Resistance R, Self Inductance L and Voltage E, the Current I at Any Time T is Given by L D I D T + R I = E. - Mathematics

Advertisements
Advertisements

Question

In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]

Sum

Solution

We have, 
\[L\frac{di}{dt} + Ri = E\]
\[ \Rightarrow \frac{di}{dt} + \frac{R}{L}i = \frac{E}{L} . . . . . \left( 1 \right)\]
\[ \therefore I . F . = e^{\int\frac{R}{L} dt} \]
\[ = e^{\frac{R}{L}t} \]
\[\text{ Multiplying both sides of (1) by }I . F . = e^{\frac{R}{L}t} , \text{ we get }\]
\[ e^{\frac{R}{L}t} \left( \frac{di}{dt} + \frac{R}{L}i \right) = e^{\frac{R}{L}t} \times \frac{E}{L}\]
\[ \Rightarrow e^{\frac{R}{L}t} \frac{di}{dt} + e^{\frac{R}{L}t} \frac{R}{L}i = e^{\frac{R}{L}t} \times \frac{E}{L}\]
Integrating both sides with respect to t, we get
\[ e^{\frac{R}{L}t} i = \frac{E}{L}\int e^{\frac{R}{L}t} dt + C\]
\[ \Rightarrow e^{\frac{R}{L}t} i = \frac{E}{L} \times \frac{L}{R} e^{\frac{R}{L}t} + C\]
\[ \Rightarrow e^{\frac{R}{L}t} i = \frac{E}{R} e^{\frac{R}{L}t} + C . . . . . . . . . . \left( 2 \right)\]
Now,
\[i = 0\text{ at }t = 0\]
\[ \therefore e^0 \times 0 = \frac{E}{R} e^0 + C\]
\[ \Rightarrow C = - \frac{E}{R}\]
\[\text{Putting the value of C in }\left( 2 \right),\text{ we get }\]
\[ e^{\frac{R}{L}t} i = \frac{E}{R} e^{\frac{R}{L}t} - \frac{E}{R}\]
\[ \Rightarrow i = \frac{E}{R} - \frac{E}{R} e^{- \frac{R}{L}t} \]
\[ \Rightarrow i = \frac{E}{R}\left( 1 - e^{- \frac{R}{L}t} \right)\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.11 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.11 | Q 10 | Page 134

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

x cos2 y  dx = y cos2 x dy


xy dy = (y − 1) (x + 1) dx


\[x\frac{dy}{dx} + \cot y = 0\]

\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[x\frac{dy}{dx} = x + y\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\]  at any point (x, y) on it.


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


The integrating factor of the differential equation (x log x)
\[\frac{dy}{dx} + y = 2 \log x\], is given by


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


Solve the following differential equation.

`(x + y) dy/dx = 1`


Solve the following differential equation.

dr + (2r)dθ= 8dθ


The solution of `dy/dx + x^2/y^2 = 0` is ______


Select and write the correct alternative from the given option for the question 

Differential equation of the function c + 4yx = 0 is


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0

y = `a + b/x`

`(dy)/(dx) = square`

`(d^2y)/(dx^2) = square`

Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`

= `x square + 2 square`

= `square`

Hence y = `a + b/x` is solution of `square`


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×