English

D Y D X = X 2 + X − 1 X , X ≠ 0 - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]
Sum

Solution

We have, 
\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}\]
\[ \Rightarrow dy = \left( x^2 + x - \frac{1}{x} \right)dx\]
Integrating both sides, we get
\[ \Rightarrow \int dy = \int\left( x^2 + x - \frac{1}{x} \right)dx\]
\[ \Rightarrow y = \frac{x^3}{3} + \frac{x^2}{2} - \log\left| x \right| + C\]
\[\text{ Clearly, } y = \frac{x^3}{3} + \frac{x^2}{2} - \log\left| x \right| +\text{ C is defined for all } x \in\text{ R except }x = 0 . \]
\[\text{ Hence, } y = \frac{x^3}{3} + \frac{x^2}{2} - \log\left| x \right| + C,\text{ where }x \in R- \left\{ 0 \right\}, \text{ is the solution to the given differential equation }.\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.05 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.05 | Q 1 | Page 34

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[x\frac{dy}{dx} + \cot y = 0\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

dy + (x + 1) (y + 1) dx = 0


\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


\[\frac{dy}{dx} = \frac{\left( x - y \right) + 3}{2\left( x - y \right) + 5}\]

(x + y) (dx − dy) = dx + dy


\[xy\frac{dy}{dx} = x^2 - y^2\]

Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


For  the following differential equation find the particular solution.

`dy/ dx = (4x + y + 1),

when  y = 1, x = 0


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


The solution of `dy/dx + x^2/y^2 = 0` is ______


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Solve:

(x + y) dy = a2 dx


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


Solve the differential equation `"dy"/"dx" + 2xy` = y


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×