English

D Y D X = 1 − Cos X 1 + Cos X - Mathematics

Advertisements
Advertisements

Question

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

Solution

We have, 
\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2 \sin^2 \frac{x}{2}}{2 \cos^2 \frac{x}{2}}\]
\[ \Rightarrow \frac{dy}{dx} = \tan^2 \frac{x}{2}\]
\[ \Rightarrow dy = \left( \tan^2 \frac{x}{2} \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( \tan^2 \frac{x}{2} \right)dx\]
\[ \Rightarrow \int dy = \int\left( \sec^2 \frac{x}{2} - 1 \right)dx\]
\[ \Rightarrow y = 2 \tan \frac{x}{2} - x + C\]
\[\text{ So, } y = 2 \tan \frac{x}{2} - x + \text{ C is defined for all }x \in R . \]
\[\text{ Hence, }y = 2 \tan \frac{x}{2} - x +\text{ C, where }x \in R, \text{ is the solution to the given differential equation } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.05 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.05 | Q 5 | Page 34

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^2 y}{d x^2} + 4y = 0\]

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]


Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + ex


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[x\frac{dy}{dx} + 1 = 0 ; y \left( - 1 \right) = 0\]

x cos2 y  dx = y cos2 x dy


\[\frac{dy}{dx} = 1 - x + y - xy\]

\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


(x2 − y2) dx − 2xy dy = 0


\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


(x + 2y) dx − (2x − y) dy = 0


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]


Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?


The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×