Advertisements
Advertisements
Question
Solution
We have,
\[\frac{dy}{dx} = 1 - x + y - xy\]
\[ \Rightarrow \frac{dy}{dx} = 1 + y - x\left( 1 + y \right)\]
\[ \Rightarrow \frac{dy}{dx} = \left( 1 + y \right)\left( 1 - x \right)\]
\[ \Rightarrow \frac{1}{1 + y}dy = \left( 1 - x \right) dx\]
Integrating both sides, we get
\[\int\frac{1}{1 + y}dy = \int\left( 1 - x \right) dx\]
\[ \Rightarrow \log \left| 1 + y \right| = x - \frac{x^2}{2} + C\]
\[\text{ Hence, }\log \left| 1 + y \right| = x - \frac{x^2}{2} +\text{ C is the required solution }.\]
APPEARS IN
RELATED QUESTIONS
xy (y + 1) dy = (x2 + 1) dx
(ey + 1) cos x dx + ey sin x dy = 0
(y + xy) dx + (x − xy2) dy = 0
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
Experiments show that radium disintegrates at a rate proportional to the amount of radium present at the moment. Its half-life is 1590 years. What percentage will disappear in one year?
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
Solve
`dy/dx + 2/ x y = x^2`
`xy dy/dx = x^2 + 2y^2`
`dy/dx = log x`
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.