English

(Y2 + 1) Dx − (X2 + 1) Dy = 0 - Mathematics

Advertisements
Advertisements

Question

(y2 + 1) dx − (x2 + 1) dy = 0

Solution

We have,
\[\left( y^2 + 1 \right) dx - \left( x^2 + 1 \right) dy = 0\]
\[ \Rightarrow \left( y^2 + 1 \right) dx = \left( x^2 + 1 \right) dy\]
\[ \Rightarrow \frac{1}{x^2 + 1}dx = \frac{1}{y^2 + 1}dy\]
Integrating both sides, we get
\[\int\frac{1}{x^2 + 1}dx = \int\frac{1}{y^2 + 1}dy\]
\[ \Rightarrow \tan^{- 1} x = \tan^{- 1} y + C\]
\[ \Rightarrow \tan^{- 1} x - \tan^{- 1} y = C\]
\[\text{ Hence, } \tan^{- 1} x - \tan^{- 1} y = \text{ C is the required solution .}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 31 | Page 55

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[x\frac{dy}{dx} + \cot y = 0\]

\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]


\[\frac{dy}{dx} = y \sin 2x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\frac{dy}{dx} = \tan\left( x + y \right)\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


Solve the following initial value problem:-

\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]


The rate of growth of a population is proportional to the number present. If the population of a city doubled in the past 25 years, and the present population is 100000, when will the city have a population of 500000?


If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?


A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


Which of the following differential equations has y = C1 ex + C2 ex as the general solution?


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`dy/dx + y = e ^-x`


Solve the differential equation:

`e^(dy/dx) = x`


Solve the differential equation:

dr = a r dθ − θ dr


Solve

`dy/dx + 2/ x y = x^2`


`xy dy/dx  = x^2 + 2y^2`


Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×