English

( 1 + X 2 ) D Y D X − X = 2 Tan − 1 X - Mathematics

Advertisements
Advertisements

Question

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]
Sum

Solution

We have,
\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{dy}{dx} = x + 2 \tan^{- 1} x\]
\[ \Rightarrow dy = \left\{ \frac{x}{1 + x^2} + \left( \frac{2}{1 + x^2} \right) \tan^{- 1} x \right\}dx\]
\[ \Rightarrow dy = \left\{ \frac{1}{2} \times \frac{2x}{1 + x^2} + \left( \frac{2}{1 + x^2} \right) \tan^{- 1} x \right\}dx\]
Integrating both sides, we get
\[\int dy = \int\left\{ \frac{1}{2} \times \frac{2x}{1 + x^2} + \left( \frac{2}{1 + x^2} \right) \tan^{- 1} x \right\}dx\]
\[ \Rightarrow y = \frac{1}{2}\int\frac{2x}{1 + x^2}dx + 2\int\left[ \frac{1}{1 + x^2} \tan^{- 1} x \right] dx\]
\[ \Rightarrow y = \frac{1}{2}\log\left| 1 + x^2 \right| + 2\int\left[ \frac{1}{1 + x^2} \tan^{- 1} x \right] dx\]
\[\text{ Putting }\tan^{- 1} x = t\]
\[ \Rightarrow \frac{1}{1 + x^2}dx = dt\]
\[ \therefore y = \frac{1}{2}\log\left| 1 + x^2 \right| + 2\int t dt\]
\[ = \frac{1}{2}\log\left| 1 + x^2 \right| + t^2 + C\]
\[ = \frac{1}{2}\log\left| 1 + x^2 \right| + \left( \tan^{- 1} x \right)^2 + C\]
\[\text{ Hence, }y = \frac{1}{2}\log\left| 1 + x^2 \right| + \left( \tan^{- 1} x \right)^2 +\text{C is the solution to the given differential equation.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.05 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.05 | Q 18 | Page 34

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

\[y\frac{d^2 x}{d y^2} = y^2 + 1\]

Show that the differential equation of which y = 2(x2 − 1) + \[c e^{- x^2}\] is a solution, is \[\frac{dy}{dx} + 2xy = 4 x^3\]


Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


\[\frac{dy}{dx} = x \log x\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[5\frac{dy}{dx} = e^x y^4\]

(ey + 1) cos x dx + ey sin x dy = 0


tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

Solve the differential equation \[\frac{dy}{dx} = \frac{2x\left( \log x + 1 \right)}{\sin y + y \cos y}\], given that y = 0, when x = 1.


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

\[x^2 \frac{dy}{dx} = x^2 - 2 y^2 + xy\]

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with x-axis is twice the abscissa of the point of contact.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


For each of the following differential equations find the particular solution.

(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0


The solution of `dy/dx + x^2/y^2 = 0` is ______


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


y2 dx + (xy + x2)dy = 0


 `dy/dx = log x`


Solve the following differential equation y log y = `(log  y - x) ("d"y)/("d"x)`


The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×