हिंदी

( 1 + X 2 ) D Y D X − X = 2 Tan − 1 X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]
योग

उत्तर

We have,
\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{dy}{dx} = x + 2 \tan^{- 1} x\]
\[ \Rightarrow dy = \left\{ \frac{x}{1 + x^2} + \left( \frac{2}{1 + x^2} \right) \tan^{- 1} x \right\}dx\]
\[ \Rightarrow dy = \left\{ \frac{1}{2} \times \frac{2x}{1 + x^2} + \left( \frac{2}{1 + x^2} \right) \tan^{- 1} x \right\}dx\]
Integrating both sides, we get
\[\int dy = \int\left\{ \frac{1}{2} \times \frac{2x}{1 + x^2} + \left( \frac{2}{1 + x^2} \right) \tan^{- 1} x \right\}dx\]
\[ \Rightarrow y = \frac{1}{2}\int\frac{2x}{1 + x^2}dx + 2\int\left[ \frac{1}{1 + x^2} \tan^{- 1} x \right] dx\]
\[ \Rightarrow y = \frac{1}{2}\log\left| 1 + x^2 \right| + 2\int\left[ \frac{1}{1 + x^2} \tan^{- 1} x \right] dx\]
\[\text{ Putting }\tan^{- 1} x = t\]
\[ \Rightarrow \frac{1}{1 + x^2}dx = dt\]
\[ \therefore y = \frac{1}{2}\log\left| 1 + x^2 \right| + 2\int t dt\]
\[ = \frac{1}{2}\log\left| 1 + x^2 \right| + t^2 + C\]
\[ = \frac{1}{2}\log\left| 1 + x^2 \right| + \left( \tan^{- 1} x \right)^2 + C\]
\[\text{ Hence, }y = \frac{1}{2}\log\left| 1 + x^2 \right| + \left( \tan^{- 1} x \right)^2 +\text{C is the solution to the given differential equation.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.05 | Q 18 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.


Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{1}{x}\frac{dy}{dx} = \tan^{- 1} x, x \neq 0\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

(1 + x2) dy = xy dx


\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

tan y dx + sec2 y tan x dy = 0


\[x\sqrt{1 - y^2} dx + y\sqrt{1 - x^2} dy = 0\]

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

x2 dy + y (x + y) dx = 0


\[\frac{dy}{dx} = \frac{x}{2y + x}\]

Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


Define a differential equation.


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = xn `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0`

Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

xdx + 2y dx = 0


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Solve the following differential equation.

y dx + (x - y2 ) dy = 0


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Solve the differential equation

`x + y dy/dx` = x2 + y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×