Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]
\[ \Rightarrow \left( 1 + x^2 \right)\frac{dy}{dx} = x + 2 \tan^{- 1} x\]
\[ \Rightarrow dy = \left\{ \frac{x}{1 + x^2} + \left( \frac{2}{1 + x^2} \right) \tan^{- 1} x \right\}dx\]
\[ \Rightarrow dy = \left\{ \frac{1}{2} \times \frac{2x}{1 + x^2} + \left( \frac{2}{1 + x^2} \right) \tan^{- 1} x \right\}dx\]
Integrating both sides, we get
\[\int dy = \int\left\{ \frac{1}{2} \times \frac{2x}{1 + x^2} + \left( \frac{2}{1 + x^2} \right) \tan^{- 1} x \right\}dx\]
\[ \Rightarrow y = \frac{1}{2}\int\frac{2x}{1 + x^2}dx + 2\int\left[ \frac{1}{1 + x^2} \tan^{- 1} x \right] dx\]
\[ \Rightarrow y = \frac{1}{2}\log\left| 1 + x^2 \right| + 2\int\left[ \frac{1}{1 + x^2} \tan^{- 1} x \right] dx\]
\[\text{ Putting }\tan^{- 1} x = t\]
\[ \Rightarrow \frac{1}{1 + x^2}dx = dt\]
\[ \therefore y = \frac{1}{2}\log\left| 1 + x^2 \right| + 2\int t dt\]
\[ = \frac{1}{2}\log\left| 1 + x^2 \right| + t^2 + C\]
\[ = \frac{1}{2}\log\left| 1 + x^2 \right| + \left( \tan^{- 1} x \right)^2 + C\]
\[\text{ Hence, }y = \frac{1}{2}\log\left| 1 + x^2 \right| + \left( \tan^{- 1} x \right)^2 +\text{C is the solution to the given differential equation.}\]
APPEARS IN
संबंधित प्रश्न
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2
(1 + x2) dy = xy dx
tan y dx + sec2 y tan x dy = 0
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.
x2 dy + y (x + y) dx = 0
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
Define a differential equation.
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
Find the particular solution of the differential equation `"dy"/"dx" = "xy"/("x"^2+"y"^2),`given that y = 1 when x = 0
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Solve the following differential equation.
`dy/dx = x^2 y + y`
Solve the following differential equation.
xdx + 2y dx = 0
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:
Solve the differential equation
`x + y dy/dx` = x2 + y2