Advertisements
Advertisements
प्रश्न
उत्तर
In this differential equation, the order of the highest order derivative is 3 and its power is 1. So, it is a differential equation of order 3 and degree 1.
It is a non-linear differential equation because the differential coefficient \[\frac{dx}{dt}\] has exponent 2, which is greater than 1.
APPEARS IN
संबंधित प्रश्न
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} + y = y^2\]
|
\[y = \frac{a}{x + a}\]
|
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
xy dy = (y − 1) (x + 1) dx
(1 − x2) dy + xy dx = xy2 dx
y (1 + ex) dy = (y + 1) ex dx
Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
`xy dy/dx = x^2 + 2y^2`
y dx – x dy + log x dx = 0
Solve the differential equation xdx + 2ydy = 0
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]