हिंदी

D 3 X D T 3 + D 2 X D T 2 + ( D X D T ) 2 = E T - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]
एक पंक्ति में उत्तर
योग

उत्तर

In this differential equation, the order of the highest order derivative is 3 and its power is 1. So, it is a differential equation of order 3 and degree 1.

It is a non-linear differential equation because the differential coefficient \[\frac{dx}{dt}\] has exponent 2, which is greater than 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.01 [पृष्ठ ४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.01 | Q 1 | पृष्ठ ४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\frac{d^2 y}{d x^2} + 4y = 0\]

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} + y = y^2\]
\[y = \frac{a}{x + a}\]

Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x


\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[x\frac{dy}{dx} + y = y^2\]

xy dy = (y − 1) (x + 1) dx


\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

(1 − x2) dy + xy dx = xy2 dx


y (1 + ex) dy = (y + 1) ex dx


\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation:
\[y e^\frac{x}{y} dx = \left( x e^\frac{x}{y} + y^2 \right)dy, y \neq 0\]

 


\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[\frac{dy}{dx} + 1 = e^{x + y}\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


\[\frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]

The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


`xy dy/dx  = x^2 + 2y^2`


y dx – x dy + log x dx = 0


Solve the differential equation xdx + 2ydy = 0


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×