हिंदी

The Differential Equation D Y D X + P Y = Q Y N , N > 2 Can Be Reduced to Linear Form by Substituting - Mathematics

Advertisements
Advertisements

प्रश्न

The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting

विकल्प

  • z = yn −1

  • z = yn

  • z = yn + 1

  • z = y1 − n

MCQ

उत्तर

z = y1 − n

 

We have,
\[\frac{dy}{dx} + Py = Q y^n \]
\[ \Rightarrow y^{- n} \frac{dy}{dx} + P y^{1 - n} = Q . . . . . \left( 1 \right)\]
\[\text{ Put }z = y^{1 - n} \]
Integrating both sides with respect to x, we get
\[\frac{dz}{dx} = \left( 1 - n \right) y^{- n} \frac{dy}{dx}\]
\[ \Rightarrow y^{- n} \frac{dy}{dx} = \frac{1}{\left( 1 - n \right)}\frac{dz}{dx}\]
\[\text{ Now, }\left( 1 \right)\text{ becomes }\]
\[\frac{1}{\left( 1 - n \right)}\frac{dz}{dx} + Pz = Q\]
\[ \Rightarrow \frac{dz}{dx} + P\left( 1 - n \right)z = Q\left( 1 - n \right)\]
Which is linear form of differential equation .
Therefore, the given differential equation can be reduce to linear form by the substitution, \[z = y^{1 - n}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - MCQ [पृष्ठ १४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
MCQ | Q 36 | पृष्ठ १४२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.


Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x^3 \frac{d^2 y}{d x^2} = 1\]
\[y = ax + b + \frac{1}{2x}\]

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\left( x + 2 \right)\frac{dy}{dx} = x^2 + 3x + 7\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\sin\left( \frac{dy}{dx} \right) = k ; y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = \sin^2 y\]

(1 + x2) dy = xy dx


\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

\[\frac{dy}{dx} = \tan\left( x + y \right)\]

\[\left( x + y + 1 \right)\frac{dy}{dx} = 1\]

\[\frac{dy}{dx} = \frac{x}{2y + x}\]

(x + 2y) dx − (2x − y) dy = 0


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


y2 dx + (x2 − xy + y2) dy = 0


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Solve the differential equation:

`"x"("dy")/("dx")+"y"=3"x"^2-2`


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


For the following differential equation find the particular solution.

`(x + 1) dy/dx − 1 = 2e^(−y)`,

when y = 0, x = 1


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


Solve the following differential equation.

`dy/dx + y` = 3


The solution of `dy/dx + x^2/y^2 = 0` is ______


Solve the differential equation:

dr = a r dθ − θ dr


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×