Advertisements
Advertisements
प्रश्न
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
विकल्प
z = yn −1
z = yn
z = yn + 1
z = y1 − n
उत्तर
z = y1 − n
We have,
\[\frac{dy}{dx} + Py = Q y^n \]
\[ \Rightarrow y^{- n} \frac{dy}{dx} + P y^{1 - n} = Q . . . . . \left( 1 \right)\]
\[\text{ Put }z = y^{1 - n} \]
Integrating both sides with respect to x, we get
\[\frac{dz}{dx} = \left( 1 - n \right) y^{- n} \frac{dy}{dx}\]
\[ \Rightarrow y^{- n} \frac{dy}{dx} = \frac{1}{\left( 1 - n \right)}\frac{dz}{dx}\]
\[\text{ Now, }\left( 1 \right)\text{ becomes }\]
\[\frac{1}{\left( 1 - n \right)}\frac{dz}{dx} + Pz = Q\]
\[ \Rightarrow \frac{dz}{dx} + P\left( 1 - n \right)z = Q\left( 1 - n \right)\]
Which is linear form of differential equation .
Therefore, the given differential equation can be reduce to linear form by the substitution, \[z = y^{1 - n}\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation of the family of hyperbolas having foci on x-axis and centre at the origin.
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
(1 + x2) dy = xy dx
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
(x + 2y) dx − (2x − y) dy = 0
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
y2 dx + (x2 − xy + y2) dy = 0
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Solve the following differential equation.
`dy/dx + y` = 3
The solution of `dy/dx + x^2/y^2 = 0` is ______
Solve the differential equation:
dr = a r dθ − θ dr
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is