हिंदी

The Integrating Factor of the Differential Equation ( 1 − Y 2 ) D X D Y + Y X = a Y ( − 1 < Y < 1 ) is - Mathematics

Advertisements
Advertisements

प्रश्न

The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.

विकल्प

  • \[\frac{1}{y^2 - 1}\]

  • \[\frac{1}{\sqrt{y^2 - 1}}\]

  • \[\frac{1}{1 - y^2}\]

  • \[\frac{1}{\sqrt{1 - y^2}}\]

MCQ
रिक्त स्थान भरें

उत्तर

The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is `bbunderline(1/(sqrt(1 - "y"^2)))`.
Explanation:
We have,
\[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\]
\[\frac{dx}{dy} + \frac{y}{1 - y^2} x = \frac{ay}{1 - y^2}\]
\[\text{Comparing with }\frac{dx}{dy} + Px = Q,\text{ we get }\]
\[P = \frac{y}{1 - y^2} \]
\[Q = \frac{ay}{1 - y^2}\]
Now, 
\[ I . F . = e^{\int\frac{y}{1 - y^2}dy} \]
\[ = e^{- \frac{1}{2}\int\frac{- 2y}{1 - y^2}dy} \]
\[ = e^{- \frac{1}{2}\log\left| 1 - y^2 \right|} \]
\[ = e^{log\left| \frac{1}{\sqrt{1 - y^2}} \right|} \]
\[ = \frac{1}{\sqrt{1 - y^2}}\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - MCQ [पृष्ठ १४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
MCQ | Q 51 | पृष्ठ १४४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].


\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

(1 + x2) dy = xy dx


\[\sqrt{1 + x^2 + y^2 + x^2 y^2} + xy\frac{dy}{dx} = 0\]

(y2 + 1) dx − (x2 + 1) dy = 0


\[\frac{dy}{dx} = 2 e^x y^3 , y\left( 0 \right) = \frac{1}{2}\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\frac{dy}{dx} = \left( x + y + 1 \right)^2\]

\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]

 

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?


The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


Form the differential equation representing the family of curves y = a sin (x + b), where ab are arbitrary constant.


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

For each of the following differential equations find the particular solution.

`y (1 + logx)dx/dy - x log x = 0`,

when x=e, y = e2.


Solve the following differential equation.

`(x + a) dy/dx = – y + a`


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×