Advertisements
Advertisements
प्रश्न
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
उत्तर
Let P (x, y) be any point on the curve. The equation of the normal at P (x, y) to the given curve is given as \[Y - y = - \frac{1}{\frac{dy}{dx}}\left( X - x \right)\]
It is given that the curve passes through the point (3, 0). Then,
\[0 - y = - \frac{1}{\frac{dy}{dx}}\left( 3 - x \right)\]
\[ \Rightarrow - y = - \frac{1}{\frac{dy}{dx}}\left( 3 - x \right)\]
\[ \Rightarrow y\frac{dy}{dx} = 3 - x\]
\[ \Rightarrow y dy = \left( 3 - x \right)dx\]
\[ \Rightarrow \frac{y^2}{2} = 3x - \frac{x^2}{2} + C . . . . . \left( 1 \right)\]
\[\text{ Since the curve passes through the point }\left( 3, 4 \right), \text{ it satisfies the equation .} \]
\[ \Rightarrow \frac{4^2}{2} = 3\left( 3 \right) - \frac{3^2}{2} + C\]
\[ \Rightarrow C = 8 - 9 + \frac{9}{2}\]
\[ \Rightarrow C = \frac{9}{2} - 1 = \frac{7}{2}\]
\[\text{ Putting the value of C in }\left( 1 \right),\text{ we get }\]
\[\frac{y^2}{2} = 3x - \frac{x^2}{2} + \frac{7}{2}\]
\[ \Rightarrow y^2 = 6x - x^2 + 7\]
\[ \Rightarrow x^2 + y^2 - 6x - 7 = 0\]
APPEARS IN
संबंधित प्रश्न
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
Verify that \[y = e^{m \cos^{- 1} x}\] satisfies the differential equation \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - m^2 y = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
(1 − x2) dy + xy dx = xy2 dx
(x + y) (dx − dy) = dx + dy
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given the number triples in 5 hrs, find how many bacteria will be present after 10 hours. Also find the time necessary for the number of bacteria to be 10 times the number of initial present.
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
The slope of the tangent at each point of a curve is equal to the sum of the coordinates of the point. Find the curve that passes through the origin.
The x-intercept of the tangent line to a curve is equal to the ordinate of the point of contact. Find the particular curve through the point (1, 1).
The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is
The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Solve the following differential equation.
`dy/dx = x^2 y + y`
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
Solve the following differential equation.
`dy /dx +(x-2 y)/ (2x- y)= 0`
Solve the following differential equation.
`dy/dx + 2xy = x`
Solve the following differential equation.
`(x + a) dy/dx = – y + a`
The solution of `dy/dx + x^2/y^2 = 0` is ______
State whether the following is True or False:
The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(-2y))/(-2)` = sin x + c1
∴ e–2y = – 2sin x – 2c1
∴ `square` = c, where c = – 2c1
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Solve: ydx – xdy = x2ydx.
If `y = log_2 log_2(x)` then `(dy)/(dx)` =
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
Solve the differential equation
`x + y dy/dx` = x2 + y2