Advertisements
Advertisements
प्रश्न
उत्तर
\[ \frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]
\[ \Rightarrow \frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
\[ \Rightarrow \frac{dy}{\left( 1 + y^2 \right)} = \left( 1 + x^2 \right) dx\]
Integrating both sides, we get
\[\int\frac{dy}{\left( 1 + y^2 \right)} = \int\left( 1 + x^2 \right) dx\]
\[ \Rightarrow \tan -^1 y = x + \frac{x^3}{3} + C . . . . . (1)\]
We know that at x = 0, y = 1 .
Substituting the values of x and y in (1), we get
\[\frac{\pi}{4} = 0 + 0 + C\]
\[ \Rightarrow C = \frac{\pi}{4}\]
Substituting the value of C in (1), we get
\[\tan -^1 y = x + \frac{x^3}{3} + \frac{\pi}{4}\]
\[\text{ Hence, }\tan -^1 y = x + \frac{x^3}{3} + \frac{\pi}{4}\text{ is the required solution .} \]
APPEARS IN
संबंधित प्रश्न
Find the differential equation of all the parabolas with latus rectum '4a' and whose axes are parallel to x-axis.
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
Differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 2\] Function y = xex + ex
(1 − x2) dy + xy dx = xy2 dx
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
(y + xy) dx + (x − xy2) dy = 0
3x2 dy = (3xy + y2) dx
If the interest is compounded continuously at 6% per annum, how much worth Rs 1000 will be after 10 years? How long will it take to double Rs 1000?
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The differential equation satisfied by ax2 + by2 = 1 is
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Solve the following differential equation
`yx ("d"y)/("d"x)` = x2 + 2y2
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.
Solve the differential equation
`x + y dy/dx` = x2 + y2
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.