Advertisements
Advertisements
प्रश्न
उत्तर
\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{\left( \frac{dy}{dx} \right)} = 2\]
In this equation, the order of the highest order derivative is 1 and its highest power is 3. So, it is a differential equation of order 1 and degree 3.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Form the differential equation representing the family of ellipses having centre at the origin and foci on x-axis.
Verify that y2 = 4ax is a solution of the differential equation y = x \[\frac{dy}{dx} + a\frac{dx}{dy}\]
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[y = \left( \frac{dy}{dx} \right)^2\]
|
\[y = \frac{1}{4} \left( x \pm a \right)^2\]
|
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
Differential equation \[\frac{d^2 y}{d x^2} - y = 0, y \left( 0 \right) = 2, y' \left( 0 \right) = 0\] Function y = ex + e−x
(sin x + cos x) dy + (cos x − sin x) dx = 0
(1 + x2) dy = xy dx
(ey + 1) cos x dx + ey sin x dy = 0
xy dy = (y − 1) (x + 1) dx
dy + (x + 1) (y + 1) dx = 0
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
(x + y) (dx − dy) = dx + dy
x2 dy + y (x + y) dx = 0
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
A population grows at the rate of 5% per year. How long does it take for the population to double?
In a simple circuit of resistance R, self inductance L and voltage E, the current `i` at any time `t` is given by L \[\frac{di}{dt}\]+ R i = E. If E is constant and initially no current passes through the circuit, prove that \[i = \frac{E}{R}\left\{ 1 - e^{- \left( R/L \right)t} \right\}.\]
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The differential equation satisfied by ax2 + by2 = 1 is
Solve the following differential equation : \[y^2 dx + \left( x^2 - xy + y^2 \right)dy = 0\] .
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
Determine the order and degree of the following differential equations.
Solution | D.E. |
y = 1 − logx | `x^2(d^2y)/dx^2 = 1` |
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
`dy/dx + y` = 3
For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0
Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`