हिंदी

√ 1 − X 4 D Y = X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\sqrt{1 - x^4} dy = x\ dx\]
योग

उत्तर

We have,
\[\sqrt{1 - x^4}dy = x\ dx\]
\[ \Rightarrow dy = \frac{x}{\sqrt{1 - x^4}}dx\]
Integrating both sides, we get
\[\int dy = \int\frac{x}{\sqrt{1 - x^4}}dx\]
\[ \Rightarrow y = \int\frac{x}{\sqrt{1 - x^4}}dx\]
\[\text{ Putting }x^2 = t\]
\[ \Rightarrow 2x\ dx = dt\]
\[ \therefore y = \frac{1}{2}\int\frac{dt}{\sqrt{1 - t^2}}\]
\[ = \frac{\sin^{- 1} t}{2} + C\]
\[ = \frac{1}{2} \sin^{- 1} \left( x^2 \right) + C\]
\[\text{ Hence, }y = \frac{1}{2} \sin^{- 1} \left( x^2 \right) +\text{C is the solution to the given differential equation.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.05 | Q 16 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


\[x + \left( \frac{dy}{dx} \right) = \sqrt{1 + \left( \frac{dy}{dx} \right)^2}\]

Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


\[\frac{dy}{dx} + 2x = e^{3x}\]

\[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\frac{dy}{dx} = x \log x\]

\[x\frac{dy}{dx} + \cot y = 0\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2 , y\left( 0 \right) = 1\]

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

\[2\left( y + 3 \right) - xy\frac{dy}{dx} = 0\], y(1) = −2

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


\[\frac{dy}{dx}\cos\left( x - y \right) = 1\]

\[2xy\frac{dy}{dx} = x^2 + y^2\]

\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


Solve the following differential equations:
\[\frac{dy}{dx} = \frac{y}{x}\left\{ \log y - \log x + 1 \right\}\]


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


Form the differential equation of the family of circles having centre on y-axis and radius 3 unit.


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Solve the following differential equation.

`dy /dx +(x-2 y)/ (2x- y)= 0`


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`dy/dx + y = e ^-x`


x2y dx – (x3 + y3) dy = 0


The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Solve the following differential equation 

sec2 x tan y dx + sec2 y tan x dy = 0

Solution: sec2 x tan y dx + sec2 y tan x dy = 0

∴ `(sec^2x)/tanx  "d"x + square` = 0

Integrating, we get

`square + int (sec^2y)/tany  "d"y` = log c

Each of these integral is of the type

`int ("f'"(x))/("f"(x))  "d"x` = log |f(x)| + log c

∴ the general solution is

`square + log |tan y|` = log c

∴ log |tan x . tan y| = log c

`square`

This is the general solution.


Integrating factor of the differential equation `x "dy"/"dx" - y` = sinx is ______.


Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×