हिंदी

Cos X D Y D X − Cos 2 X = Cos 3 X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]
योग

उत्तर

We have,
\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]
\[ \Rightarrow dy = \frac{\cos 3x + \cos 2x}{\cos x}dx\]
\[ \Rightarrow dy = \frac{4 \cos^3 x - 3\cos x + 2 \cos^2 x - 1}{\cos x}dx\]
\[ \Rightarrow dy = \left( 4 \cos^2 x - 3 + 2\cos x - \sec x \right)dx\]
\[ \Rightarrow dy = \left[ 2\left( 2 \cos^2 x - 1 \right) - 1 + 2\cos x - \sec x \right]dx\]
\[ \Rightarrow dy = \left( 2\cos 2x - 1 + 2\cos x - \sec x \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( 2\cos 2x - 1 + 2\cos x - \sec x \right)dx\]
\[ \Rightarrow y = \sin 2x - x + 2\sin x - \log\left| \sec x + \tan x \right| + C\]
\[\text{ Hence, } y = \sin 2x - x + 2\sin x - \log\left| \sec x + \tan x \right| +\text{C is the solution to the given differential equation.}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.05 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.05 | Q 15 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\sqrt{1 + \left( \frac{dy}{dx} \right)^2} = \left( c\frac{d^2 y}{d x^2} \right)^{1/3}\]

Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\sqrt{a + x} dy + x\ dx = 0\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

xy (y + 1) dy = (x2 + 1) dx


\[x\frac{dy}{dx} + \cot y = 0\]

\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0


\[\frac{dy}{dx} = 1 - x + y - xy\]

Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]


Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]


2xy dx + (x2 + 2y2) dy = 0


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Determine the order and degree of the following differential equations.

Solution D.E.
ax2 + by2 = 5 `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx`

Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Solve:

(x + y) dy = a2 dx


For the differential equation, find the particular solution

`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


Solve: ydx – xdy = x2ydx.


A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×