Advertisements
Advertisements
प्रश्न
उत्तर
We have,
\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]
\[ \Rightarrow dy = \frac{\cos 3x + \cos 2x}{\cos x}dx\]
\[ \Rightarrow dy = \frac{4 \cos^3 x - 3\cos x + 2 \cos^2 x - 1}{\cos x}dx\]
\[ \Rightarrow dy = \left( 4 \cos^2 x - 3 + 2\cos x - \sec x \right)dx\]
\[ \Rightarrow dy = \left[ 2\left( 2 \cos^2 x - 1 \right) - 1 + 2\cos x - \sec x \right]dx\]
\[ \Rightarrow dy = \left( 2\cos 2x - 1 + 2\cos x - \sec x \right)dx\]
Integrating both sides, we get
\[\int dy = \int\left( 2\cos 2x - 1 + 2\cos x - \sec x \right)dx\]
\[ \Rightarrow y = \sin 2x - x + 2\sin x - \log\left| \sec x + \tan x \right| + C\]
\[\text{ Hence, } y = \sin 2x - x + 2\sin x - \log\left| \sec x + \tan x \right| +\text{C is the solution to the given differential equation.}\]
APPEARS IN
संबंधित प्रश्न
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
xy (y + 1) dy = (x2 + 1) dx
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
2xy dx + (x2 + 2y2) dy = 0
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.
Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].
If xmyn = (x + y)m+n, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Determine the order and degree of the following differential equations.
Solution | D.E. |
ax2 + by2 = 5 | `xy(d^2y)/dx^2+ x(dy/dx)^2 = y dy/dx` |
Form the differential equation from the relation x2 + 4y2 = 4b2
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx - y = x` is e-x
Solve:
(x + y) dy = a2 dx
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Solve: ydx – xdy = x2ydx.
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: