Advertisements
Advertisements
प्रश्न
If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).
उत्तर
\[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\]
\[ \Rightarrow \frac{1}{1 + y}dy = \frac{- \cos x}{2 + \sin x}dx\]
\[ \Rightarrow \int\frac{1}{1 + y}dy = - \int\frac{\cos x}{2 + \sin x}dx\]
\[ \Rightarrow \log\left| 1 + y \right| = - \log\left| 2 + \sin x \right| + \log C\]
\[ \Rightarrow \log\left| \left( 1 + y \right)\left( 2 + \sin x \right) \right| = \log C\]
\[ \Rightarrow \left( 1 + y \right)\left( 2 + \sin x \right) = C . . . . . \left( 1 \right)\]
Now, y(0) = 1
\[\therefore \left( 1 + 1 \right)\left( 2 + 0 \right) = C\]
\[ \Rightarrow C = 4\]
Substituting the value of C in (1), we get
(1 + y)(2 + sinx) = 4
\[\Rightarrow 1 + y = \frac{4}{2 + \sin x}\]
\[ \Rightarrow y = \frac{4}{2 + \sin x} - 1\]
\[ \Rightarrow y\left( \frac{\pi}{2} \right) = \frac{4}{2 + \sin\left( \frac{\pi}{2} \right)} - 1\]
\[ = \frac{4}{3} - 1\]
\[ = \frac{1}{3}\]
APPEARS IN
संबंधित प्रश्न
Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]
Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = ex + 1
Differential equation \[\frac{d^2 y}{d x^2} - 3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = ex + e2x
C' (x) = 2 + 0.15 x ; C(0) = 100
(ey + 1) cos x dx + ey sin x dy = 0
Solve the following differential equation:
\[\left( 1 + y^2 \right) \tan^{- 1} xdx + 2y\left( 1 + x^2 \right)dy = 0\]
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
Find the equation of the curve which passes through the point (3, −4) and has the slope \[\frac{2y}{x}\] at any point (x, y) on it.
The rate of increase of bacteria in a culture is proportional to the number of bacteria present and it is found that the number doubles in 6 hours. Prove that the bacteria becomes 8 times at the end of 18 hours.
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
y = ex + 1 y'' − y' = 0
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^-1 "x"` is
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Solve the following differential equation.
y2 dx + (xy + x2 ) dy = 0
Solve the following differential equation.
y dx + (x - y2 ) dy = 0
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae5x + Be–5x is
Solve the differential equation xdx + 2ydy = 0
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
Solve the differential equation
`y (dy)/(dx) + x` = 0