हिंदी

Differential Equation D 2 Y D X 2 − D Y D X = 0 , Y ( 0 ) = 2 , Y ′ ( 0 ) = 1 Function Y = Ex + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1

योग

उत्तर

We have,

\[y = e^x + 1...........(1)\]

Differentiating both sides of (1) with respect to X, we get

\[\frac{dy}{dx} = e^x............(2)\]

Differentiating both sides of (2) with respect to X, we get

\[\frac{d^2 y}{d x^2} = e^x \]

\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{dy}{dx} ..........\left[ \text{Using (2)}\right]\]

\[ \Rightarrow \frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0 \]

It is the given differential equation.

\[y = e^x + 1\] satisfies the given differential equation; hence, it is a solution.

Also, when \[x = 0, y = e^0 + 1 = 1 + 1 = 2,\text{ i.e. }y(0) = 2\]

And, when \[x = 0, y' = e^0 = 1,\text{ i.e. }y'(0) = 1\]

Hence, \[y = e^x + 1\] is the solution to the given initial value problem.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.04 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.04 | Q 4 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega +  b omega^2) =  omega^2`


\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\]  satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]


Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\]  is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[y = \left( \frac{dy}{dx} \right)^2\]
\[y = \frac{1}{4} \left( x \pm a \right)^2\]

\[\left( 1 + x^2 \right)\frac{dy}{dx} - x = 2 \tan^{- 1} x\]

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y\left( 2 \right) = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]

 


\[\frac{dy}{dx} = 2 e^{2x} y^2 , y\left( 0 \right) = - 1\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


(x + y) (dx − dy) = dx + dy


\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

2xy dx + (x2 + 2y2) dy = 0


Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The equation of the curve whose slope is given by \[\frac{dy}{dx} = \frac{2y}{x}; x > 0, y > 0\] and which passes through the point (1, 1) is


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The differential equation of the ellipse \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = C\] is


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

`y=sqrt(a^2-x^2)`              `x+y(dy/dx)=0`


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Solve the following differential equation.

`dy/dx + y` = 3


Solve the following differential equation.

`dy/dx + 2xy = x`


Choose the correct alternative.

The solution of `x dy/dx = y` log y is


Select and write the correct alternative from the given option for the question

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.


Solution of `x("d"y)/("d"x) = y + x tan  y/x` is `sin(y/x)` = cx


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×