हिंदी

Solve the following differential equation. dydx+y = 3 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following differential equation.

`dy/dx + y` = 3

योग

उत्तर

`dy/dx + y` = 3

The given equation is of the form

`dy/dx + py = Q`

where, P = 1 and Q = 3

∴ I.F. = `e int^(pdx) = e int^ (1dx) = e^x`

∴ Solution of the given equation is

`y(I.F.) = int Q(I.F.) dx + c`

∴ `ye^x = int 3e^x dx + c`

∴ yex = 3ex + c

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differential Equation and Applications - Exercise 8.5 [पृष्ठ १६८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Differential Equation and Applications
Exercise 8.5 | Q 1.2 | पृष्ठ १६८

संबंधित प्रश्न

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]


Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]

Function y = log x


\[\frac{dy}{dx} = \log x\]

\[\frac{dy}{dx} = \frac{1 + y^2}{y^3}\]

xy dy = (y − 1) (x + 1) dx


\[\frac{dy}{dx} = \frac{x e^x \log x + e^x}{x \cos y}\]

\[y\sqrt{1 + x^2} + x\sqrt{1 + y^2}\frac{dy}{dx} = 0\]

\[\frac{dy}{dx} = 1 - x + y - xy\]

\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \log x, y\left( 1 \right) = 0\]


Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]


The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.


Write the differential equation obtained by eliminating the arbitrary constant C in the equation x2 − y2 = C2.


The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


Choose the correct option from the given alternatives:

The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of


Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`


Solve: `("d"y)/("d"x) + 2/xy` = x2 


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.


There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×