हिंदी

Solve the Following Initial Value Problem:- Tan X ( D Y D X ) = 2 X Tan X + X 2 − Y ; Tan X ≠ 0 Given that Y = 0 When X = π 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]

योग

उत्तर

\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y\]
\[ \Rightarrow \frac{dy}{dx} + \frac{1}{\tan x}y = \frac{2x\tan x + x^2}{\tan x}\]
\[ \Rightarrow \frac{dy}{dx} + \left( \cot x \right)y = 2x + x^2 \cot x\]
This is a linear differential equation of the form \[\frac{dy}{dx} + Py = Q\]
Integrating factor, I.F. = \[e^{\int Pdx} = e^{\int\cot xdx} = e^{log\sin x} = \sin x\]
The solution of the given differential equation is given by
\[y \times \left( I . F . \right) = \int Q \times \left( I . F . \right)dx + C\]
\[ \Rightarrow y \times \sin x = \int\left( 2x + x^2 \cot x \right)\sin xdx + C\]
\[ \Rightarrow y\sin x = \int2x\sin xd x + \int x^2 \cos xdx + C\]
\[ \Rightarrow y\sin x = \int2x\sin xdx + \left[ x^2 \int\cos xdx - \int\left( \frac{d}{dx} x^2 \times \int\cos xdx \right)dx \right] + C\]
\[\Rightarrow y\sin x = \int2x\sin xdx + x^2 \sin x - \int2x\sin xdx + C\]
\[ \Rightarrow y\sin x = x^2 \sin x + C\]
\[ \Rightarrow y = x^2 + \text{ cosec }x \times C . . . . . \left( 1 \right)\]
It is given that, y = 0 when \[x = \frac{\pi}{2}\]
\[\therefore 0 = \left( \frac{\pi}{2} \right)^2 +\text{ cosec }\frac{\pi}{2} \times C\]
\[ \Rightarrow C = - \frac{\pi^2}{4}\]
Putting \[C = - \frac{\pi^2}{4}\] in (1), we get
\[y = x^2 - \frac{\pi^2}{4}\text{ cosec }x\]
Hence, 
\[y = x^2 - \frac{\pi^2}{4}\text{ cosec }x\] is the required solution.
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.10 [पृष्ठ १०७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.10 | Q 37.13 | पृष्ठ १०७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Prove that:

`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`


\[\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 + xy = 0\]

\[\frac{d^4 y}{d x^4} = \left\{ c + \left( \frac{dy}{dx} \right)^2 \right\}^{3/2}\]

\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\sqrt{a + x} dy + x\ dx = 0\]

Solve the differential equation \[\frac{dy}{dx} = e^{x + y} + x^2 e^y\].

\[\frac{dy}{dx} = e^{x + y} + e^y x^3\]

dy + (x + 1) (y + 1) dx = 0


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.


(x + y) (dx − dy) = dx + dy


\[\frac{dy}{dx} + 1 = e^{x + y}\]

Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by


The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting


What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


Find the differential equation whose general solution is

x3 + y3 = 35ax.


Solve the following differential equation.

`(x + y) dy/dx = 1`


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


Solve the differential equation:

`e^(dy/dx) = x`


x2y dx – (x3 + y3) dy = 0


Solve the following differential equation y2dx + (xy + x2) dy = 0


Solve the following differential equation

`x^2  ("d"y)/("d"x)` = x2 + xy − y2 


Choose the correct alternative:

General solution of `y - x ("d"y)/("d"x)` = 0 is


A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution


The function y = ex is solution  ______ of differential equation


State whether the following statement is True or False:

The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x 


Solve the following differential equation

`y log y ("d"x)/("d"y) + x` = log y


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×