Advertisements
Advertisements
प्रश्न
Solve the following initial value problem:-
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2 - y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
उत्तर
\[ \Rightarrow \frac{dy}{dx} + \frac{1}{\tan x}y = \frac{2x\tan x + x^2}{\tan x}\]
\[ \Rightarrow \frac{dy}{dx} + \left( \cot x \right)y = 2x + x^2 \cot x\]
This is a linear differential equation of the form \[\frac{dy}{dx} + Py = Q\]
Integrating factor, I.F. = \[e^{\int Pdx} = e^{\int\cot xdx} = e^{log\sin x} = \sin x\]
The solution of the given differential equation is given by
\[y \times \left( I . F . \right) = \int Q \times \left( I . F . \right)dx + C\]
\[ \Rightarrow y \times \sin x = \int\left( 2x + x^2 \cot x \right)\sin xdx + C\]
\[ \Rightarrow y\sin x = \int2x\sin xd x + \int x^2 \cos xdx + C\]
\[ \Rightarrow y\sin x = \int2x\sin xdx + \left[ x^2 \int\cos xdx - \int\left( \frac{d}{dx} x^2 \times \int\cos xdx \right)dx \right] + C\]
\[\Rightarrow y\sin x = \int2x\sin xdx + x^2 \sin x - \int2x\sin xdx + C\]
\[ \Rightarrow y\sin x = x^2 \sin x + C\]
\[ \Rightarrow y = x^2 + \text{ cosec }x \times C . . . . . \left( 1 \right)\]
It is given that, y = 0 when \[x = \frac{\pi}{2}\]
\[\therefore 0 = \left( \frac{\pi}{2} \right)^2 +\text{ cosec }\frac{\pi}{2} \times C\]
\[ \Rightarrow C = - \frac{\pi^2}{4}\]
Putting \[C = - \frac{\pi^2}{4}\] in (1), we get
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
dy + (x + 1) (y + 1) dx = 0
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
In a culture the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present.
(x + y) (dx − dy) = dx + dy
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y = e^{- 2x} \sin x, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + 2y \tan x = \sin x; y = 0\text{ when }x = \frac{\pi}{3}\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
The solution of the differential equation \[\frac{dy}{dx} - \frac{y\left( x + 1 \right)}{x} = 0\] is given by
The differential equation
\[\frac{dy}{dx} + Py = Q y^n , n > 2\] can be reduced to linear form by substituting
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Solve the following differential equation.
`(x + y) dy/dx = 1`
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
Solve the differential equation:
`e^(dy/dx) = x`
x2y dx – (x3 + y3) dy = 0
Solve the following differential equation y2dx + (xy + x2) dy = 0
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x2 + xy − y2
Choose the correct alternative:
General solution of `y - x ("d"y)/("d"x)` = 0 is
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
The function y = ex is solution ______ of differential equation
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of: