Advertisements
Advertisements
प्रश्न
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
उत्तर
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
\[ \Rightarrow \frac{dy}{dx} = 2\cos x - ycot x \]
\[ \Rightarrow \frac{dy}{dx} + y\cot x = 2\cos x . . . . \left( 1 \right) \]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = \cot x\text{ and }Q = 2\cos x\]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int\cot x\ dx} \]
\[ = e^{\log{sinx}} \]
\[ = \sin x\]
\[\text{ Multiplying both sides of }\left( 1 \right)\text{ by }I . F . = \sin x,\text{ we get }\]
\[\sin x\left( \frac{dy}{dx} + y\cot x \right) = 2\sin x\cos x\]
\[ \Rightarrow \sin x\frac{dy}{dx} + y\cos x = \sin2x\]
Integrating both sides with respect to x, we get
\[y\sin x = \int\sin 2x dx + C\]
\[ \Rightarrow y\sin x = - \frac{\cos2x}{2} + C \]
\[\text{ Hence, }y\sin x = - \frac{\cos2x}{2} + C\text{ is the required solution.}\]
APPEARS IN
संबंधित प्रश्न
Prove that:
`int_0^(2a)f(x)dx = int_0^af(x)dx + int_0^af(2a - x)dx`
Show that y = AeBx is a solution of the differential equation
Show that the differential equation of which \[y = 2\left( x^2 - 1 \right) + c e^{- x^2}\] is a solution is \[\frac{dy}{dx} + 2xy = 4 x^3\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x^3 \frac{d^2 y}{d x^2} = 1\]
|
\[y = ax + b + \frac{1}{2x}\]
|
x2 dy + y (x + y) dx = 0
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
(y2 − 2xy) dx = (x2 − 2xy) dy
3x2 dy = (3xy + y2) dx
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
At every point on a curve the slope is the sum of the abscissa and the product of the ordinate and the abscissa, and the curve passes through (0, 1). Find the equation of the curve.
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.
The slope of a curve at each of its points is equal to the square of the abscissa of the point. Find the particular curve through the point (−1, 1).
Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^2-2`
Determine the order and degree of the following differential equations.
Solution | D.E |
y = aex + be−x | `(d^2y)/dx^2= 1` |
Solve the following differential equation.
`dy/dx = x^2 y + y`
For each of the following differential equations find the particular solution.
(x − y2 x) dx − (y + x2 y) dy = 0, when x = 2, y = 0
Solve the following differential equation.
`x^2 dy/dx = x^2 +xy - y^2`
Solve the following differential equation.
`dy/dx + y = e ^-x`
Solve the following differential equation.
`dy/dx + y` = 3
x2y dx – (x3 + y3) dy = 0
Solve: `("d"y)/("d"x) + 2/xy` = x2
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Given that `"dy"/"dx"` = yex and x = 0, y = e. Find the value of y when x = 1.
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
`d/(dx)(tan^-1 (sqrt(1 + x^2) - 1)/x)` is equal to:
Solve the differential equation
`y (dy)/(dx) + x` = 0
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.