हिंदी

Solve the differential equation dydxdydx = 1 + x + y2 + xy2, when y = 0, x = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.

योग

उत्तर

Given equation is `"dy"/"dx"` = 1 + x + y2 + xy2 

⇒ `"dy"/"dx"` = 1(1 + x) + y2(1 + x)

⇒ `"dy"/"dx"` = (1 + x)(1 + y2)

⇒ `"dy"/(1 + y^2)` = (1 + x)dx

Integrating both sides, we get

`int "dy"/(1 + y^2) = int(1 + x)"d"x`

⇒ `tan^-1y = x + x^2/2 + "c"`

Put x = 0 and y = 0

We get tan–1(0) = 0 + 0 + c

⇒ c = 0

∴ tan–1y = `x + x^2/2`

⇒ y = `tan(x + x^2/2)`

Hence, the required solution is y = `tan(x + x^2/2)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Differential Equations - Exercise [पृष्ठ १९३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 9 Differential Equations
Exercise | Q 9 | पृष्ठ १९३

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that the function y = A cos x + B sin x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + y = 0\]


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

(sin x + cos x) dy + (cos x − sin x) dx = 0


\[\frac{dy}{dx} = x^5 \tan^{- 1} \left( x^3 \right)\]

\[\frac{dy}{dx} + \frac{1 + y^2}{y} = 0\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

(y + xy) dx + (x − xy2) dy = 0


Solve the following differential equation: 
(xy2 + 2x) dx + (x2 y + 2y) dy = 0


\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.


In a bank principal increases at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e0.5 = 1.648).


Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.


\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

Solve the following initial value problem:-

\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]


Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


Solve the following differential equation : \[\left( \sqrt{1 + x^2 + y^2 + x^2 y^2} \right) dx + xy \ dy = 0\].


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


The differential equation of `y = k_1e^x+ k_2 e^-x` is ______.


Solve

`dy/dx + 2/ x y = x^2`


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


The function y = ex is solution  ______ of differential equation


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×