हिंदी

Find the Particular Solution of Edy/Dx = X + 1, Given that Y = 3, When X = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.

उत्तर

We have, 
\[ e^\frac{dy}{dx} = x + 1\]
\[ \Rightarrow \frac{dy}{dx} = \log \left( x + 1 \right)\]
\[ \Rightarrow dy = \log \left( x + 1 \right) dx\]
Integrating both sides, we get 
\[\int dy = \int\log \left( x + 1 \right) dx\]
\[ \Rightarrow y = \log \left( x + 1 \right)\int1 dx - \int\left[ \frac{d}{dx}\left\{ \log \left( x + 1 \right) \right\}\int1 dx \right]dx\]
\[ \Rightarrow y = x \log \left( x + 1 \right) - \int\frac{1}{x + 1} \times x dx\]
\[ \Rightarrow y = x \log \left( x + 1 \right) - \int\left( 1 - \frac{1}{x + 1} \right) dx\]
\[ \Rightarrow y = x \log \left( x + 1 \right) - \int dx + \int\frac{1}{x + 1}dx\]
\[ \Rightarrow y = x \log \left( x + 1 \right) - x + \log \left| x + 1 \right| + C\]
\[ \Rightarrow y = \left( x + 1 \right) \log \left| x + 1 \right| - x + C . . . . . (1)\]
It is given that at x = 0 and y = 3 . 
Substituing the values of x and y in (1), we get 
\[C = 3\]
Therefore, substituting the value of C in (1), we get
\[y = \left( x + 1 \right) \log \left| x + 1 \right| - x + 3\]
\[\text{ Hence, }y = \left( x + 1 \right) \log \left| x + 1 \right| - x + 3 \text{ is the required solution . }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.07 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.07 | Q 49 | पृष्ठ ५६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

\[\frac{d^3 x}{d t^3} + \frac{d^2 x}{d t^2} + \left( \frac{dx}{dt} \right)^2 = e^t\]

\[\left( \frac{dy}{dx} \right)^2 + \frac{1}{dy/dx} = 2\]

Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

 

Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].


Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.


Verify that \[y = ce^{tan^{- 1}} x\]  is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]


For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

xy dy = (y − 1) (x + 1) dx


\[\sqrt{1 + x^2} dy + \sqrt{1 + y^2} dx = 0\]

tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

\[2x\frac{dy}{dx} = 3y, y\left( 1 \right) = 2\]

\[xy\frac{dy}{dx} = y + 2, y\left( 2 \right) = 0\]

Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\] 

 


3x2 dy = (3xy + y2) dx


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


Solve the following initial value problem:-

\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]


Solve the following initial value problem:-

\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]


Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]


Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\]  and tangent at any point of which makes an angle tan−1  \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.


Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\]  = x (x + 1) and passing through (1, 0).


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


The price of six different commodities for years 2009 and year 2011 are as follows: 

Commodities A B C D E F

Price in 2009 (₹)

35 80 25 30 80 x
Price in 2011 (₹) 50 y 45 70 120 105

The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.


In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2

Find the differential equation whose general solution is

x3 + y3 = 35ax.


Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation.

`y^3 - dy/dx = x dy/dx`


Solve the following differential equation.

x2y dx − (x3 + y3 ) dy = 0


Solve the following differential equation.

`dy/dx + y = e ^-x`


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


Solve the differential equation

`x + y dy/dx` = x2 + y2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×