Advertisements
Advertisements
प्रश्न
Find the particular solution of edy/dx = x + 1, given that y = 3, when x = 0.
उत्तर
We have,
\[ e^\frac{dy}{dx} = x + 1\]
\[ \Rightarrow \frac{dy}{dx} = \log \left( x + 1 \right)\]
\[ \Rightarrow dy = \log \left( x + 1 \right) dx\]
Integrating both sides, we get
\[\int dy = \int\log \left( x + 1 \right) dx\]
\[ \Rightarrow y = \log \left( x + 1 \right)\int1 dx - \int\left[ \frac{d}{dx}\left\{ \log \left( x + 1 \right) \right\}\int1 dx \right]dx\]
\[ \Rightarrow y = x \log \left( x + 1 \right) - \int\frac{1}{x + 1} \times x dx\]
\[ \Rightarrow y = x \log \left( x + 1 \right) - \int\left( 1 - \frac{1}{x + 1} \right) dx\]
\[ \Rightarrow y = x \log \left( x + 1 \right) - \int dx + \int\frac{1}{x + 1}dx\]
\[ \Rightarrow y = x \log \left( x + 1 \right) - x + \log \left| x + 1 \right| + C\]
\[ \Rightarrow y = \left( x + 1 \right) \log \left| x + 1 \right| - x + C . . . . . (1)\]
It is given that at x = 0 and y = 3 .
Substituing the values of x and y in (1), we get
\[C = 3\]
Therefore, substituting the value of C in (1), we get
\[y = \left( x + 1 \right) \log \left| x + 1 \right| - x + 3\]
\[\text{ Hence, }y = \left( x + 1 \right) \log \left| x + 1 \right| - x + 3 \text{ is the required solution . }\]
APPEARS IN
संबंधित प्रश्न
Assume that a rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
Hence, the given function is the solution to the given differential equation. \[\frac{c - x}{1 + cx}\] is a solution of the differential equation \[(1+x^2)\frac{dy}{dx}+(1+y^2)=0\].
Verify that y = − x − 1 is a solution of the differential equation (y − x) dy − (y2 − x2) dx = 0.
Verify that \[y = ce^{tan^{- 1}} x\] is a solution of the differential equation \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + \left( 2x - 1 \right)\frac{dy}{dx} = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation | Function |
\[x\frac{dy}{dx} = y\]
|
y = ax |
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x
xy dy = (y − 1) (x + 1) dx
tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y)
Find the solution of the differential equation cos y dy + cos x sin y dx = 0 given that y = \[\frac{\pi}{2}\], when x = \[\frac{\pi}{2}\]
3x2 dy = (3xy + y2) dx
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.
Solve the following initial value problem:-
\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y \tan x = 2x + x^2 \tan x, y\left( 0 \right) = 1\]
Solve the following initial value problem:-
\[dy = \cos x\left( 2 - y\text{ cosec }x \right)dx\]
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Find the equation of the curve passing through the point \[\left( 1, \frac{\pi}{4} \right)\] and tangent at any point of which makes an angle tan−1 \[\left( \frac{y}{x} - \cos^2 \frac{y}{x} \right)\] with x-axis.
Find the equation to the curve satisfying x (x + 1) \[\frac{dy}{dx} - y\] = x (x + 1) and passing through (1, 0).
Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities | A | B | C | D | E | F |
Price in 2009 (₹) |
35 | 80 | 25 | 30 | 80 | x |
Price in 2011 (₹) | 50 | y | 45 | 70 | 120 | 105 |
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Find the differential equation whose general solution is
x3 + y3 = 35ax.
Form the differential equation from the relation x2 + 4y2 = 4b2
Solve the following differential equation.
`y^3 - dy/dx = x dy/dx`
Solve the following differential equation.
x2y dx − (x3 + y3 ) dy = 0
Solve the following differential equation.
`dy/dx + y = e ^-x`
Choose the correct alternative.
The integrating factor of `dy/dx - y = e^x `is ex, then its solution is
Solve the following differential equation `("d"y)/("d"x)` = x2y + y
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is
Solve the differential equation
`x + y dy/dx` = x2 + y2