हिंदी

In the following example, verify that the given function is a solution of the corresponding differential equation. Solution D.E. xy = log y + k y' (1 - xy) = y2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

In the following example, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
xy = log y + k y' (1 - xy) = y2
योग

उत्तर

xy = log y + k

Differentiating w.r.t. x, we get

`x dy/dx+ y (1) = 1/y.dy/dx`

∴ `xy dy/dx+ y ^2 = dy/dx`

∴ `dy/dx- x y  dy/dx = y^2`

∴ `(1-xy)dy/dx = y^2`

∴ `y' (1-xy) = y^2`

∴ Given function is a solution of the given differential equation.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differential Equation and Applications - Exercise 8.1 [पृष्ठ १६२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Differential Equation and Applications
Exercise 8.1 | Q 2.1 | पृष्ठ १६२

संबंधित प्रश्न

Show that Ax2 + By2 = 1 is a solution of the differential equation x \[\left\{ y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 \right\} = y\frac{dy}{dx}\]

 


Show that y = ax3 + bx2 + c is a solution of the differential equation \[\frac{d^3 y}{d x^3} = 6a\].

 


\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\frac{dy}{dx} = \left( e^x + 1 \right) y\]

\[\frac{dy}{dx} = \frac{e^x \left( \sin^2 x + \sin 2x \right)}{y\left( 2 \log y + 1 \right)}\]

\[\frac{dy}{dx} = 2xy, y\left( 0 \right) = 1\]

\[\left( x + y \right)^2 \frac{dy}{dx} = 1\]

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[\frac{dy}{dx} = \frac{x + y}{x - y}\]

Show that the equation of the curve whose slope at any point is equal to y + 2x and which passes through the origin is y + 2 (x + 1) = 2e2x.


The tangent at any point (x, y) of a curve makes an angle tan−1(2x + 3y) with x-axis. Find the equation of the curve if it passes through (1, 2).


The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.


Show that y = ae2x + be−x is a solution of the differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\]


Find the equation of the plane passing through the point (1, -2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2). 


Solve the following differential equation.

`dy/dx = x^2 y + y`


Solve the following differential equation.

`xy  dy/dx = x^2 + 2y^2`


A solution of a differential equation which can be obtained from the general solution by giving particular values to the arbitrary constants is called ___________ solution.


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


Solve: `("d"y)/("d"x) + 2/xy` = x2 


`d/(dx)(tan^-1  (sqrt(1 + x^2) - 1)/x)` is equal to:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×