हिंदी

Cos 2 ( X − 2 Y ) = 1 − 2 D Y D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]
योग

उत्तर

We have, 

\[ \cos^2 \left( x - 2y \right) = 1 - 2\frac{dy}{dx}\]

\[ \Rightarrow 2\frac{dy}{dx} = 1 - \cos^2 \left( x - 2y \right)\]

\[\text{Let }x - 2y = v\]

\[ \Rightarrow 1 - 2\frac{dy}{dx} = \frac{dv}{dx}\]

\[ \Rightarrow 2\frac{dy}{dx} = 1 - \frac{dv}{dx}\]

\[ \therefore 1 - \frac{dv}{dx} = 1 - \cos^2 v\]

\[ \Rightarrow \frac{dv}{dx} = \cos^2 v\]

\[ \Rightarrow \sec^2 v dv = dx\]

Integrating both sides, we get

\[\int \sec^2 v dv = \int dx\]

\[ \Rightarrow \tan v = x - C\]

\[ \Rightarrow \tan\left( x - 2y \right) = x - C\]

\[ \Rightarrow x = \tan\left( x - 2y \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Differential Equations - Exercise 22.08 [पृष्ठ ६६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 22 Differential Equations
Exercise 22.08 | Q 6 | पृष्ठ ६६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Show that y = AeBx is a solution of the differential equation

\[\frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]

Show that y = e−x + ax + b is solution of the differential equation\[e^x \frac{d^2 y}{d x^2} = 1\]

 


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x


\[\frac{dy}{dx} = x^2 + x - \frac{1}{x}, x \neq 0\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 xy\]

(ey + 1) cos x dx + ey sin x dy = 0


\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = e^{x + y} + e^{- x + y}\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]

 


\[\cos y\frac{dy}{dx} = e^x , y\left( 0 \right) = \frac{\pi}{2}\]

\[\frac{dy}{dx} = \left( x + y \right)^2\]

\[x\frac{dy}{dx} = y - x \cos^2 \left( \frac{y}{x} \right)\]

Solve the following initial value problem:-

\[x\frac{dy}{dx} - y = \left( x + 1 \right) e^{- x} , y\left( 1 \right) = 0\]


If the marginal cost of manufacturing a certain item is given by C' (x) = \[\frac{dC}{dx}\] = 2 + 0.15 x. Find the total cost function C (x), given that C (0) = 100.

 

A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.


Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of  radium to decompose?


Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-

y = ex + 1            y'' − y' = 0


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


In each of the following examples, verify that the given function is a solution of the corresponding differential equation.

Solution D.E.
y = ex  `dy/ dx= y`

Solve the following differential equation.

`x^2 dy/dx = x^2 +xy - y^2`


Solve the following differential equation.

`dy/dx + y` = 3


Solve the following differential equation.

dr + (2r)dθ= 8dθ


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Solve the differential equation (x2 – yx2)dy + (y2 + xy2)dx = 0


For the differential equation, find the particular solution (x – y2x) dx – (y + x2y) dy = 0 when x = 2, y = 0


Solve the following differential equation

`yx ("d"y)/("d"x)` = x2 + 2y2 


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)

Solution: `("d"y)/("d"x)` = cos(x + y)    ......(1)

Put `square`

∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`

∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`

∴ (1) becomes `"dv"/("d"x) - 1` = cos v

∴ `"dv"/("d"x)` = 1 + cos v

∴ `square` dv = dx

Integrating, we get

`int 1/(1 + cos "v")  "d"v = int  "d"x`

∴ `int 1/(2cos^2 ("v"/2))  "dv" = int  "d"x`

∴ `1/2 int square  "dv" = int  "d"x`

∴ `1/2* (tan("v"/2))/(1/2)` = x + c

∴ `square` = x + c


The integrating factor of the differential equation `"dy"/"dx" (x log x) + y` = 2logx is ______.


The differential equation of all non horizontal lines in a plane is `("d"^2x)/("d"y^2)` = 0


lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha - y cos alpha` = 0, then the value of `a^2 + b^2` is


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×