Advertisements
Advertisements
प्रश्न
Show that y = AeBx is a solution of the differential equation
उत्तर
We have, \[y = A e^{Bx} ................(1)\]
Differentiating both sides of (1) with respect to x, we get
\[\frac{dy}{dx} = AB e^{Bx} ................(2)\]
Differentiating both sides of (2) with respect to x, we get
\[\frac{d^2 y}{d x^2} = A B^2 e^{Bx} \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{\left( AB e^{Bx} \right)^2}{\left( A e^{Bx} \right)}\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2 ...........\left[\text{Using }\left( 1 \right)\text{ and }\left( 2 \right) \right]\]
\[ \Rightarrow \frac{d^2 y}{d x^2} = \frac{1}{y} \left( \frac{dy}{dx} \right)^2\]
Hence, the given function is the solution to the given differential equation.
APPEARS IN
संबंधित प्रश्न
Verify that y = 4 sin 3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 9y = 0\]
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Verify that y2 = 4a (x + a) is a solution of the differential equations
\[y\left\{ 1 - \left( \frac{dy}{dx} \right)^2 \right\} = 2x\frac{dy}{dx}\]
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
Solve the following differential equation:
\[xy\frac{dy}{dx} = 1 + x + y + xy\]
x2 dy + y (x + y) dx = 0
Solve the following initial value problem:-
\[\frac{dy}{dx} - 3y \cot x = \sin 2x; y = 2\text{ when }x = \frac{\pi}{2}\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
Find the equation of the curve such that the portion of the x-axis cut off between the origin and the tangent at a point is twice the abscissa and which passes through the point (1, 2).
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
In the following verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:-
`y=sqrt(a^2-x^2)` `x+y(dy/dx)=0`
Form the differential equation representing the family of parabolas having vertex at origin and axis along positive direction of x-axis.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = xn | `x^2(d^2y)/dx^2 - n xx (xdy)/dx + ny =0` |
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
y = ex | `dy/ dx= y` |
Find the differential equation whose general solution is
x3 + y3 = 35ax.
For the following differential equation find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)`,
when y = 0, x = 1
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solve the following differential equation.
`(x + y) dy/dx = 1`
Choose the correct alternative.
Bacteria increases at the rate proportional to the number present. If the original number M doubles in 3 hours, then the number of bacteria will be 4M in
x2y dx – (x3 + y3) dy = 0
Solve the differential equation xdx + 2ydy = 0
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is e–x
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
The value of `dy/dx` if y = |x – 1| + |x – 4| at x = 3 is ______.