Advertisements
Advertisements
प्रश्न
A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.
उत्तर
Tangent at P(x, y) is given by \[Y - y = \frac{dy}{dx}(X - x)\]
If p be the perpendicular from the origin, then
\[p = \frac{x\frac{dy}{dx} - y}{\sqrt{\left[ 1 + \left( \frac{dy}{dx} \right)^2 \right]}} = x ............\left(\text{given}\right)\]
\[\Rightarrow x^2 \left( \frac{dy}{dx} \right)^2 - 2xy\frac{dy}{dx} + y^2 = x^2 + x^2 \left( \frac{dy}{dx} \right)^2 \]
\[ \Rightarrow y^2 - 2xy\frac{dy}{dx} - x^2 = 0 \]
Hence proved.
\[\text{ Now, }y^2 - 2xy\frac{dy}{dx} - x^2 = 0 \Rightarrow \frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]
\[ \Rightarrow 2xy\frac{dy}{dx} - y^2 = - x^2 \]
\[ \Rightarrow 2y\frac{dy}{dx} - \frac{y^2}{x} = - x^{} \]
\[\text{ Let }y^2 = v\]
\[ \Rightarrow \frac{dv}{dx} - \frac{v}{x} = - x \]
Multiplying by the integrating factor \[e^{\int - \frac{1}{x}dx} = \frac{1}{x}\]
\[v . \frac{1}{x} = \int - x . \frac{1}{x}dx + c = - x + c\]
\[ \Rightarrow \frac{y^2}{x^2} = - x + c\]
\[ \Rightarrow x^2 + y^2 = cx\]
APPEARS IN
संबंधित प्रश्न
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Show that y = ex (A cos x + B sin x) is the solution of the differential equation \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\]
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = ex
x cos2 y dx = y cos2 x dy
(1 + x) (1 + y2) dx + (1 + y) (1 + x2) dy = 0
Solve the following differential equation:
\[y\left( 1 - x^2 \right)\frac{dy}{dx} = x\left( 1 + y^2 \right)\]
Solve the following initial value problem:-
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:-
\[\left( 1 + y^2 \right) dx + \left( x - e^{- \tan^{- 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:-
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
Find the equation of the curve which passes through the point (2, 2) and satisfies the differential equation
\[y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}\]
Find the curve for which the intercept cut-off by a tangent on x-axis is equal to four times the ordinate of the point of contact.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for one-half of the original amount of radium to decompose?
Define a differential equation.
The differential equation \[x\frac{dy}{dx} - y = x^2\], has the general solution
Verify that the function y = e−3x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + \frac{dy}{dx} - 6y = 0.\]
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x2 – 3y2 – 4x = 8.
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution | D.E. |
xy = log y + k | y' (1 - xy) = y2 |
Solve the following differential equation.
(x2 − y2 ) dx + 2xy dy = 0
Solve the following differential equation.
`dy/dx + y` = 3
Solve the following differential equation.
dr + (2r)dθ= 8dθ
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the differential equation sec2y tan x dy + sec2x tan y dx = 0
Solve the differential equation `("d"y)/("d"x) + y` = e−x
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y - 1)` when x = `2/3`, y = `1/3`
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x) - 1`
∴ (1) becomes `"dv"/("d"x) - 1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
An appropriate substitution to solve the differential equation `"dx"/"dy" = (x^2 log(x/y) - x^2)/(xy log(x/y))` is ______.
Integrating factor of the differential equation `"dy"/"dx" - y` = cos x is ex.
Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.
Solve the differential equation `"dy"/"dx"` = 1 + x + y2 + xy2, when y = 0, x = 0.
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]