English

A Curve is Such that the Length of the Perpendicular from the Origin on the Tangent at Any Point P of the Curve is Equal to the Abscissa of P. Prove that the Differential Equation of the Curve is - Mathematics

Advertisements
Advertisements

Question

A curve is such that the length of the perpendicular from the origin on the tangent at any point P of the curve is equal to the abscissa of P. Prove that the differential equation of the curve is \[y^2 - 2xy\frac{dy}{dx} - x^2 = 0\], and hence find the curve.

Sum

Solution

Tangent  at P(x, y) is given by \[Y - y = \frac{dy}{dx}(X - x)\]
If p be the perpendicular from the origin, then 
\[p = \frac{x\frac{dy}{dx} - y}{\sqrt{\left[ 1 + \left( \frac{dy}{dx} \right)^2 \right]}} = x ............\left(\text{given}\right)\]
\[\Rightarrow x^2 \left( \frac{dy}{dx} \right)^2 - 2xy\frac{dy}{dx} + y^2 = x^2 + x^2 \left( \frac{dy}{dx} \right)^2 \]
\[ \Rightarrow y^2 - 2xy\frac{dy}{dx} - x^2 = 0 \]
Hence proved. 
\[\text{ Now, }y^2 - 2xy\frac{dy}{dx} - x^2 = 0 \Rightarrow \frac{dy}{dx} = \frac{y^2 - x^2}{2xy}\]
\[ \Rightarrow 2xy\frac{dy}{dx} - y^2 = - x^2 \]
\[ \Rightarrow 2y\frac{dy}{dx} - \frac{y^2}{x} = - x^{} \]
\[\text{ Let }y^2 = v\]
\[ \Rightarrow \frac{dv}{dx} - \frac{v}{x} = - x \]
Multiplying by the integrating factor \[e^{\int - \frac{1}{x}dx} = \frac{1}{x}\]
\[v . \frac{1}{x} = \int - x . \frac{1}{x}dx + c = - x + c\]
\[ \Rightarrow \frac{y^2}{x^2} = - x + c\]
\[ \Rightarrow x^2 + y^2 = cx\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.11 [Page 135]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.11 | Q 24 | Page 135

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x + y\frac{dy}{dx} = 0\]
\[y = \pm \sqrt{a^2 - x^2}\]

\[\frac{dy}{dx} - x \sin^2 x = \frac{1}{x \log x}\]

\[\sqrt{1 - x^4} dy = x\ dx\]

\[\frac{dy}{dx} = x e^x - \frac{5}{2} + \cos^2 x\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\cos x \cos y\frac{dy}{dx} = - \sin x \sin y\]

\[\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0\]

(y2 + 1) dx − (x2 + 1) dy = 0


\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[\frac{dy}{dx} = y \tan x, y\left( 0 \right) = 1\]

The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after `t` seconds.


If y(x) is a solution of the different equation \[\left( \frac{2 + \sin x}{1 + y} \right)\frac{dy}{dx} = - \cos x\] and y(0) = 1, then find the value of y(π/2).


\[\frac{dy}{dx} = \left( x + y \right)^2\]

Find the equation of the curve passing through the point (0, 1) if the slope of the tangent to the curve at each of its point is equal to the sum of the abscissa and the product of the abscissa and the ordinate of the point.


Find the equation of the curve that passes through the point (0, a) and is such that at any point (x, y) on it, the product of its slope and the ordinate is equal to the abscissa.


Write the differential equation obtained eliminating the arbitrary constant C in the equation xy = C2.


Find the solution of the differential equation
\[x\sqrt{1 + y^2}dx + y\sqrt{1 + x^2}dy = 0\]


The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y \sin x = 1\], is


The integrating factor of the differential equation \[x\frac{dy}{dx} - y = 2 x^2\]


The integrating factor of the differential equation \[\left( 1 - y^2 \right)\frac{dx}{dy} + yx = ay\left( - 1 < y < 1 \right)\] is ______.


Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.


If a + ib = `("x" + "iy")/("x" - "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2 - "y"^2)`


Solve the following differential equation.

y2 dx + (xy + x2 ) dy = 0


Solve the following differential equation.

`dy/dx + y` = 3


Choose the correct alternative.

The differential equation of y = `k_1 + k_2/x` is


State whether the following is True or False:

The integrating factor of the differential equation `dy/dx - y = x` is e-x


Solve the differential equation:

`e^(dy/dx) = x`


y2 dx + (xy + x2)dy = 0


`xy dy/dx  = x^2 + 2y^2`


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Solve the differential equation `("d"y)/("d"x) + y` = e−x 


Find the particular solution of the following differential equation

`("d"y)/("d"x)` = e2y cos x, when x = `pi/6`, y = 0.

Solution: The given D.E. is `("d"y)/("d"x)` = e2y cos x

∴ `1/"e"^(2y)  "d"y` = cos x dx

Integrating, we get

`int square  "d"y` = cos x dx

∴ `("e"^(-2y))/(-2)` = sin x + c1

∴ e–2y = – 2sin x – 2c1

∴ `square` = c, where c = – 2c

This is general solution.

When x = `pi/6`, y = 0, we have

`"e"^0 + 2sin  pi/6` = c

∴ c = `square`

∴ particular solution is `square`


Solve `x^2 "dy"/"dx" - xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`


Given that `"dy"/"dx" = "e"^-2x` and y = 0 when x = 5. Find the value of x when y = 3.


If `y = log_2 log_2(x)` then `(dy)/(dx)` =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×