English

( X − 1 ) D Y D X = 2 X 3 Y - Mathematics

Advertisements
Advertisements

Question

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]
Sum

Solution

We have, 
\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]
\[ \Rightarrow \frac{1}{y}dy = \frac{2 x^3}{x - 1}dx\]
Integrating both sides, we get 
\[\int\frac{1}{y}dy = \int\frac{2 x^3}{x - 1}dx\]
\[ \Rightarrow \log \left| y \right| = 2\int\frac{x^3 - 1 + 1}{x - 1}dx\]
\[ \Rightarrow \log \left| y \right| = 2\left[ \int\frac{x^3 - 1}{x - 1}dx + \int\frac{1}{x - 1}dx \right]\]
\[ \Rightarrow \log \left| y \right| = 2\left[ \int\frac{\left( x - 1 \right)\left( x^2 + x + 1 \right)}{x - 1}dx + \int\frac{1}{x - 1}dx \right]\]
\[ \Rightarrow \log \left| y \right| = 2\left[ \int\left( x^2 + x + 1 \right) dx + \int\frac{1}{x - 1}dx \right]\]
\[ \Rightarrow \log \left| y \right| = 2 \left[ \frac{x^3}{3} + \frac{x^2}{2} + x + \log \left| x - 1 \right| \right] + C\]
\[ \Rightarrow \log \left| y \right| = \frac{2}{3} x^3 + x^2 + 2x + \log \left| x - 1 \right|^2 + C\]
\[ \Rightarrow y = e^{\frac{2}{3} x^3 + x^2 + 2x + \log \left| x - 1 \right|^2 + C}\]
\[ \Rightarrow y = e^C \times e^{{log} \left| x - 1 \right|^2} \times e^{\frac{2}{3} x^3 + x^2 + 2x}\]
\[ \Rightarrow y = C_1 \left| x - 1 \right|^2 e^{\frac{2}{3} x^3 + x^2 + 2x} ..........\left[ \because e^{ln\ x} = x\text{ and where, }C_1 = e^C \right]\]
\[ \therefore y = C_1 \left| x - 1 \right|^2 e^{\frac{2}{3} x^3 + x^2 + 2x} \text{ is required solution.} \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Exercise 22.07 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Exercise 22.07 | Q 34 | Page 55

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

For the following differential equation verify that the accompanying function is a solution:

Differential equation Function
\[x\frac{dy}{dx} = y\]
y = ax

Differential equation \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]

Function y = ex + 1


Differential equation \[\frac{dy}{dx} + y = 2, y \left( 0 \right) = 3\] Function y = e−x + 2


Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 1\] Function y = sin x + cos x


\[\cos x\frac{dy}{dx} - \cos 2x = \cos 3x\]

\[\left( x^3 + x^2 + x + 1 \right)\frac{dy}{dx} = 2 x^2 + x\]

\[\left( x - 1 \right)\frac{dy}{dx} = 2 x^3 y\]

\[5\frac{dy}{dx} = e^x y^4\]

(1 − x2) dy + xy dx = xy2 dx


tan y \[\frac{dy}{dx}\] = sin (x + y) + sin (x − y) 

 


\[\frac{dy}{dx} = 1 - x + y - xy\]

\[\frac{dy}{dx} = \left( \cos^2 x - \sin^2 x \right) \cos^2 y\]

\[\frac{dy}{dx} = y \tan 2x, y\left( 0 \right) = 2\] 

\[\frac{dy}{dx} = 1 + x + y^2 + x y^2\] when y = 0, x = 0

Solve the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + \left( 1 + y^2 \right) = 0\], given that y = 1, when x = 0.


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\]  given that y = 1, when x = 0.


\[\frac{dy}{dx} = \tan\left( x + y \right)\]

2xy dx + (x2 + 2y2) dy = 0


Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{xy}{x^2 + y^2}\] given that y = 1 when x = 0.

 


The slope of the tangent at a point P (x, y) on a curve is \[\frac{- x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.


Find the equation of the curve which passes through the origin and has the slope x + 3y− 1 at any point (x, y) on it.


Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\]  are rectangular hyperbola.


Integrating factor of the differential equation cos \[x\frac{dy}{dx} + y\] sin x = 1, is


Which of the following is the integrating factor of (x log x) \[\frac{dy}{dx} + y\] = 2 log x?


Determine the order and degree of the following differential equations.

Solution D.E.
y = 1 − logx `x^2(d^2y)/dx^2 = 1`

Find the differential equation whose general solution is

x3 + y3 = 35ax.


Form the differential equation from the relation x2 + 4y2 = 4b2


Solve the following differential equation.

`(dθ)/dt  = − k (θ − θ_0)`


Solve the following differential equation.

(x2 − y2 ) dx + 2xy dy = 0


Choose the correct alternative.

The integrating factor of `dy/dx -  y = e^x `is ex, then its solution is


State whether the following is True or False:

The degree of a differential equation is the power of the highest ordered derivative when all the derivatives are made free from negative and/or fractional indices if any.


Solve:

(x + y) dy = a2 dx


x2y dx – (x3 + y3) dy = 0


Select and write the correct alternative from the given option for the question

The differential equation of y = Ae5x + Be–5x is


Solve the following differential equation `("d"y)/("d"x)` = x2y + y


Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0


The differential equation (1 + y2)x dx – (1 + x2)y dy = 0 represents a family of:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×